Odonata flight performance capabilities and behaviour and their body and wing form diversity are explored, and their interrelationships discussed theoretically and from observational evidence. Overall size and particularly wing loading appear predictably to be related to speed range. In Anisoptera at least, relatively short bodies and long wings should favour high speed manoeuvrability, though further…
From their earliest appearance in the fossil record, dragonflies have clearly taken a different approach to flight than other insect groups. Even the superficially similar Neuroptera do not fly like dragonflies. Flight specialisation has enabled dragonflies to occupy a range of niches, as specialised predators of flying insects, for around 300 My.
Dragonfly flight: a Symposium from the 2017 International Congress of Odonatology held at Clare College, Cambridge Richard Rowea Research School of Biology, Australian National University, Canberra, ACT, Australia International Journal of Odonatology, Volume 23, Issue 1, Pages 1-4, 2020https://doi.org/10.1080/13887890.2019.1681812Published: 2 January 220 Full text PDF Copyright information Issue section: Introduction
The latest issue of International Journal of Odonatology is now available online and will be arriving in mailboxes soon! This issue focuses on dragonfly flight and stems from a symposium at the 2017 International Congress of Odonatology in Cambridge, UK. Preview the issue >>here<< and get full access >>here<<. You must be a WDA member (more…)
Aquatic macroinvertebrates are a primary component of freshwater ecosystems and one of the most threatened by anthropogenic pressures. Among them, dragonflies are a charismatic group of growing scientific and social interest. However, little is known about the natural history of several species. One paradigmatic example is the declining Orthetrum nitidinerve, a Western Mediterranean endemic anisopteran….
Remarkable flight performance is key to the survival of adult Odonata. They integrate varied three-dimensional architectures and kinematics of the wings, unsteady aerodynamics, and sensory feedback control in order to achieve agile flight. Therefore, a diverse range of approaches are necessary to understand their flight strategy comprehensively. Recently, new data have been presented in several…
Acceleration manoeuvres in free flight in nature of five damselfly (Zygoptera) and four dragonfly (Anisoptera) species were analysed by means of slow motion filming. Changes in stroke frequencies, stroke angles, stroke directions, angles of inclination of the wings, and the phase-relationship of fore- and hindwings were recorded during acceleration. Damselflies and dragonflies showed similar actions….
Charlie Ellington (1952-2019) – a career in animal flight mechanics Robin Woottona Department of Biosciences, University of Exeter, Exeter, UK International Journal of Odonatology, Volume 23, Issue 1, Pages 5-8, 2020https://doi.org/10.1080/13887890.2019.1682372Published: 2 January 220 Full text PDF Copyright information Issue section: Article
Insect wings have no flight muscles, except those situated in the thorax. However, they continuously respond to forces acting on them during flight. This ability is achieved by the specialised design of the wings and plays a key role in their aerodynamic performance. Dragonfly (Anisoptera) wings represent an extreme example of this automatic shape control…
Predator escape behaviour is a critical component of dragonfly life history. Flight initiation distance is the distance at which escape commences, and is well studied in vertebrates, barely studied in invertebrates, and entirely unstudied in dragonflies. Here we test four principles regarding flight initiation distance as derived from studies of vertebrates to examine if they…