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Abstract. In recent decades, a lack of available knowledge about the magnitude, identity 
and distribution of biodiversity has given way to a taxonomic impediment where species 
are not being described as fast as the rate of extinction. Using Machine Learning methods 
based on seven different algorithms (LR, CART, KNN, GNB, LDA, SVM and RFC) we have 
created an automatic identification approach for odonate genera, through images of wing 
contours. The training population is composed of the collected specimens that have been 
digitized in the framework of the NSF funded Odomatic and TOWD projects. Each contour 
was pre-processed, and 80 coefficients were extracted for each specimen. These form a 
database with 4656 rows and 80 columns, which was divided into 70% for training and 
30% for testing the classifiers. The classifier with the best performance was a Linear Dis-
criminant Analysis (LDA), which discriminated the highest number of classes (100) with 
an accuracy value of 0.7337, precision of 0.75, recall of 0.73 and a F1 score of 0.73. Ad-
ditionally, two main confusion groups are reported, among genera within the suborders of 
Anisoptera and Zygoptera. These confusion groups suggest a need to include other mor-
phological characters that complement the wing information used for the classification 
of these groups thereby improving accuracy of classification. Likewise, the findings of this 
work open the door to the application of machine learning methods for the identification 
of species in Odonata and in insects more broadly which would potentially reduce the 
impact of the taxonomic impediment. 
Key words. Classification, Machine Learning, supervised, wings 

Introduction

Dragonflies and damselflies (Odonata) are one of the most charismatic insect 
groups, due to their relatively big size, flight patterns and beautiful colorations. 
Their association with aquatic environments means they serve as excellent bioin-
dicators of water quality, given their high susceptibility to environmental changes 
(Córdoba-Aguilar, 2008; Moore, 1997; Samways & Steytler, 1996). Global odonate 
richness is estimated to comprise around 6.323 species (Paulson et al., 2021). This 
is a relatively small number of species in comparison with other insect orders like 
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Coleoptera, which includes approximately 300,000 spe-
cies (Lorenzo-Carballa & Cordero Rivera, 2012; Paulson 
personal communication, May 14, 2021). However, re-
searchers suspect that ~20% of species remain to be 
discovered (Kalkman et al., 2008). The tangible and rel-
atively low diversity in odonates makes them an ideal 
scenario to address the “taxonomic impediment”—a 
lack of available knowledge about and trained exper-
tise to determine the magnitude, identity, and distribu-
tion of biodiversity (González, 2009). This phenomenon 
is of particular interest given the current worldwide 
“biodiversity crisis” (i.e., rapid declining of populations 
as a result of massive habitat destruction and climate 
change), in which, there are estimates that ~50% of the 
living species will face extinction in the next 50 years 
(Koh et al., 2004). Maximizing efforts to gather and 
learn the taxonomy and biology of species is more rel-
evant now than ever (Ceballos et al., 2015; Kuhn, 2016; 
La Salle et al., 2016).

There are several morphological characteristics that 
define the odonate suborders Zygoptera and Aniso
ptera, including: characters regarding the shape of the 
wings, head, thorax, abdomen and genitalia (Garrison 
et al., 2006). In particular, wing shape and venation 
patterns are one of the most commonly used traits to 
classify dragonflies and damselflies to family or genus 
level. For example, without the aid of a microscope 
one can easily differentiate them because anisopterans 
have different shapes of the fore- and hindwings, which 
remain perpendicular to the body when in rest, while 
zygopterans’ fore- and hindwings are similar in shape 
and are usually folded in line with the body (Heckman, 
2006, 2008). Recent contributions by Appel & Gorb 
(2014) proposed detailed micro-morphological charac-
teristics of the wings such as the types of vein joints 
and combinations among them (i.e., four types of vein 
joints and five combinations), spine distribution across 
the wings (i.e., located on transversal veins, possibly in-
volved in movement limitation), and the distribution of 
patches of the flexible protein resilin in the wings (e.g., 
on the joints, and/or along the veins). These new mor-
phological traits have been discussed in the classifica-
tion for both suborders, and are used to infer function 
and flight behavior. 

Recently, Kuhn (2016) developed an automatic clas-
sification system for 26 dragonfly genera, using stan-
dardized image scans of specimen wings. He trained 
and classified them using a random forest algorithm by 
extracting feature vectors to describe texture and pat-
terning through Gabor Wavelet Filters and a color as-
sessment with a chromaticity standardization sampling 
within the images. Here we assessed the classification 
power to genera of a novel classifier trait for wings—
their contour. By using standardized wing images from 
the Targeted Odonata Wing Digitization project, we test-
ed multiple Machine Learning classification algorithms 
(e.g., Linear Discriminant Analysis—LDA, Logistic Regres-
sion—LR, Classification and Regression Trees— CART, 
K-Nearest Neighbors—KNN, Naive Bayes—NB, Support 

Vector Machines—SVM, and Random Forest Classifier—
RFC) to establish the potential use of the wing contour 
within automated classification systems for odonates.

Materials and methods

We analyzed data from the Targeted Odonata Wing 
Digitization Project (TOWD; https://digitizingdragon-
flies.org), which aims to digitize the wings of all North 
America species of Odonata and to develop tools for 
automatically extracting useful characters from odo-
nate wings to facilitate comparative studies and au-
tomatic species classification. We analyzed a dataset 
comprising 2,328 dragonfly and damselflies specimens 
from 111 genera, which were digitized through the 
TOWD Project. The dataset consisted of the contour 
(outline) of the fore- and hindwings of each specimen. 
These data were extracted from digital scans of the 
specimens using an edge-finding algorithm to recover 
a series of points (x,y-coordinates) representing the lo-
cation of each pixel along the edge of a wing. In most 
cases, the contours represented the right wings, which 
were excised from the specimen’s body and scanned 
on a flatbed scanner, except in some cases where the 
left-side wings were scanned when the right ones were 
damaged (see Supplementary Table 1 for a list of speci-
mens). In the latter case, wing contours were reflected 
left-to-right to match up with right-side wing contours. 
As part of the TOWD preprocessing, each contour was 
rotated so that the upper side (costal margin) is approx-
imately horizontal, translated so that the upper-left cor-
ner is at (0,0) and scaled to millimeters. The edges of 
some wings were damaged, which was also apparent in 
their respective contours; such damage was used as an 
exclusion criterion.

Contours data were preprocessed and analyzed in 
Python (van Rossum & Drake Jr, 2009; v. 3.9.2) using 
the Spyder Integrated Development Environment (IDE) 
Spyder (Raybaut, 2009; v. 4.2.1), which is part of the 
Anaconda Software Distribution (2016). Data treat-
ment was divided into four main steps (Available code: 
https://doi.org/10.5281/zenodo.6614239): 
(i)	 Preprocessing and Fourier’s descriptors extraction: 

Standardization was performed on every contour, to 
ensure the comparability of data and improve the 
classification accuracy (Pal & Sudeep, 2016). This 
was accomplished by following a series of functions 
that returned a slightly modified set of coordinates 
that fulfill common main characteristics: The con-
tour was closed by appending the first coordinate to 
the last one, in case these didn’t coincide; the direc-
tion of the coordinates of every contour was veri-
fied and changed to be on a clockwise orientation; 
in case the contour contained less than 200 points, 
some points were interpolated. Next, the apex of 
the wing is located, and the coordinates are rotated 
to make it the starting point. Finally, the contour 
was checked again to ensure it had been closed. 

https://digitizingdragonflies.org
https://digitizingdragonflies.org
https://doi.org/10.5281/zenodo.6614239
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After the preprocessing, the Fourier descriptor’s 
coefficients were extracted using the Python im-
plementation for approximating contours with a 
Fourier series, PyEFD (Blidh, 2016). This process al-
lowed the extraction of the same number of coef-
ficients for each wing, regardless of their size. The 
normalized coefficients were kept in a separate 
database, with each specimen’s unique identifier 
(uniq-id).

(ii)	 Database division in training and test datasets: A 
train-test division was performed, following a 70/30 
proportion: 70% to train the model and 30% for 
testing/validation. 

(iii)	Definition, training, and testing of classifier algo-
rithms: Seven classifiers were chosen to be trained 
and tested for classification from the Scikit-learn 
distribution (Pedregosa et al., 2011): 

•	 Logistic Regression (LR) is a binary linear classifier, 
which is the simplest and is used as a baseline mod-
el. To adjust LR to a multiclass problem, where the 
classification is done with a one vs rest method, the 
option multi_class = 'ovr' was set. 

•	 Classification and Regression Trees (CART) is a mul-
ticlass classifier that uses recursive partitioning fol-
lowing the Gini Impurity Index to build a decision 
tree.

•	 K-Nearest Neighbors (KNN) is a multiclass classifier 
that assumes similarity depending on class proxim-
ity, calculated as an Euclidean distance.

•	 Naïve Bayes (NB) is a multiclass classifier that as-
sumes conditional independence between every 
pair of classes. 

•	 Linear Discriminant Analysis (LDA): is a linear clas-
sifier for a multiclass problem. It ensures the maxi-
mum separability of classes by reinforcing the pro-
portion of intra and inter class variance (Narayan, 
2020; Tharwat et al., 2017).

•	 Support Vector Machines (SVM) build a hyperplane 
or group of hyperplanes on a higher dimensionality 
space that allow the separation of nonlinear prob-
lems (Gandhi, 2018). The option StandardScaler 
was used to normalize and scale the data; and the 
option SVC, is used to specify the classification task. 

•	 Random Forest Classifier (RFC) fits several decision 
trees on different sub-samples of the data. To set 
the number of trees in the forest, the option n_esti-
mators = 200 was set. 

In addition, for each classifier, a cross validation 
score and a classification report was obtained with 
five items: Accuracy (number of correct predic-
tions from the total number of predictions), Preci-
sion (number of true positives from all the positive 
predictions), Recall (number of positive predictions 
from the total number of positive classes), F1 score 
(following equation: 
2 (True Positives (TP) × False Positives (FP) ÷ 2 TP + 

FP + False Negatives (FN))
and Support (number of individuals in each class). 

(iv)	Confusion matrices: Confusion matrices were plot-
ted for each classifier to obtain a detailed visual-
ization of the classification errors: On them, the 
predicted and real classes are found on the x- and 
y-axis, respectively. The correct predictions of the 
classifier are found on the diagonal where the pre-
dicted and true labels coincide. In consequence, the 
predictions that lay outside of this diagonal, corre-
spond to classification errors that inform about the 
performance of the classifiers, as well as possible 
confusion patterns.

Finally, we performed ANOVA and Tukey tests in order 
to compare the accuracy and F1 scores from the clas-
sification report, along with box plots calculated from 
the data.

Figure 1. (A) Accuracy (number of correct predictions from 
the total number of predictions) and (B) F1 Score (a mea-
sure of a model’s accuracy on a dataset that follows the for-
mula: ((2 × Precision × Recall) ÷ (Precision + Recall)) boxplots 
of 3-fold cross validation for each of the seven classifiers 
tested. A total of 1397 individuals for each testing dataset 
per classifier was used; same letters indicate non-significant 
comparisons, p-values are shown for the   CART—NB and 
SVM—RFC comparisons which were non-significant for both 
scores. 
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Results
   

We extracted a dataset of 4656 rows and 81 columns of 
Fourier coefficients, after the preprocessing images and 
the Fourier extraction loop we defined. Each row of this 
dataset belongs to an individual organism and each col-
umn to one of the coefficients. In total, we obtained 39 
descriptors for each wing (hindwing and forewing) per 
individual, to be used later in the classification.

To the latter database, we tagged the genus label to 
each individual (row) in order to create a training and a 
testing set following a 70:30 proportion, respectively. 
As a result we generated 3259 individuals (70%) for the 

training, and 1397 individuals (30%) for the testing sets. 
The accuracy scores were similar enough in all seven 
classifiers defined (LDA, SVC, LR, CART, NB, RFC, KNN) 
between the two sets, which rules out possible over-
fitting of the classification models (see Supplementary 
Tables 2, 3). Furthermore, using the testing set the clas-
sification report obtained showed that the LDA classi-
fier had the best performance in terms of: (1) accuracy 
(0.7337); (2) precision (0.75); (3) recall (0.73) and F1 
score (0.73); in comparison with the other six classifi-
ers tested (Supplementary Table 3). The ANOVAs per-
formed for the F1 score and accuracy were significant 
(Fig. 1; Supplementary Tables 4 + 6), across the models. 

Figure 2. Confusion matrix. (A) LDA Confusion Matrix. next page. (B) Confusion Matrix showing misclassification zones distrib-
uted mainly on four families: Gomphidae (blue), Libellulidae (red), Coenagrionidae (green), Lestidae (orange). Each cell of the 
matrix corresponds to every possible true label and predicted label pairing. The color bar on the side of each plot, shows the 
code for the number of coincidences on each cell (from 0 = white, to 80 = dark blue).
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The post-hoc Tukey multiple comparisons test showed 
differences for the accuracy and the F1 score compari-
son among all the classifiers, with the exception of the 
CART and NB comparison, and the SVM and RFC com-
parison (Fig. 1; Supplementary Tables 5 + 7). The lat-
ter performance metrics relies on the calculated con-
fusion matrix per model, the LDA classifier confusion 
matrix shows the highest number of individuals on the 
diagonal, meaning these are true positives (Fig. 2A). 
Despite its better performance we noticed consistency 
in particular taxa that create misclassification in almost 
all classifiers, that we call confusion groups (Fig. 2B, 
Supplementary Figures 1–6). Particular genera within 
the following four families—Gomphidae, Libellulidae, 
Coenagrionidae and Lestidae—seem to be responsible 
for the misclassification observed (Fig. 3). 

Discussion

Image preprocessing functions allowed a standardiza-
tion of the coordinates on the contour dataset. This 
process has been found to guarantee data comparabil-
ity and improve classification accuracy when compared 
with non-preprocessed images (Pal & Sudeep, 2016; 
Shahriar & Li, 2020; Sharma et al., 2020). The similarity 
of accuracy scores for all the classifiers in both training 
and testing sets, suggest that there were not overfit-
ting issues in the models tested (Brownlee, 2017). Fur-
thermore, we detected different numbers of classes 
(genera) for each of the seven classifiers. For example, 
the classifier with the best performance, LDA, created 
and recognized a total of 100 (classes proxy of genera) 
from 111 genera we included in the taxon sampling. 

Figure 2. Continued (see page before).
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Figure 3. Confusion groups. 
(A)  Anisoptera: True (real) label 
on left column and Predicted 
label on the right column. Sur-
rounded by a red square (top): 
the Gomphidae genus Arigom-
phus (True label) was predicted 
as Hylogomphus, Progomphus, 
Ophiogomphus, Stylurus and 
Gomphurus (also from the Gom-
phidae family). At the bottom 
of the figure, surrounded by a 
blue square: the genus Libel-
lula (Libellulidae), was confused 
with Gomphurus (Gomphidae), 
Erythemis (Libellulidae), Aeshna 
(Aeshnidae) and Coryphaeshna 
(Aeshnidae). (B) Zygoptera: True 
(real) label on left and right col-
umn and Predicted label on the 
center column. Surrounded by a 
red square (top left) Coenagrio
nidae genus Enallagma was pre-
dicted as Argia, Acanthagrion 
and Cyanallagma (Also Coen
agrionidae genera). Surrounded 
by a green square,the genus 
Lestes (Lestidae) was predicted 
as Coenagrionidae genera Argia 
and Enallagma. At the bottom of 
the figure, surrounded by a blue 
square, genus Ischnura (Coen
agrionidae), was predicted as 
Acanthagrion, Argia, Enallagma 
(all Coenagrionidae) and Lestes 
(Lestidae). Illustrations from 
Amanda Whispell. 
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(see Table 1, Supplementary Table 3). These differences 
may be due to class imbalance, meaning that there is 
unequal representation of genera in the dataset, with 
some of them having only one individual in the data-
set (Table 1). Therefore, it is possible that during the 
data partitioning some groups were not included in the 
training dataset, which prevents the label from being 
created and in consequence, it would then not be in-
cluded in the classification report. Likewise, if any of 
the groups were not represented in the testing dataset 
then its label would still be created, but the values for 
the metrics would be zero.

Furthermore, since machine learning algorithms de-
pend on the distribution of classes in the training set to 
estimate the probability of observing examples in each 
class, class imbalance causes algorithms to learn that 
less well represented classes are not as important as 
the majority classes, so the performance will be bet-
ter in the latter (Brownlee, 2017). To solve this incon-
venience, an alternative could be to partition the data 
set in a stratified way, to ensure that all classes are bal-
anced in the training and test sets. Moreover, it is nec-
essary to increase the number of individuals in the less 
represented genera.

According to Kuhn (2016), the accuracy values are 
not strongly affected by the number of classes. In his 
study, a comparison was made between models with 
different numbers of classes, which ranged from three 
to 26. The results of the research suggest that a greater 
number of classes does not have a significant effect on 
accuracy, which slightly decreased its variation, as the 
number of classes increased, staying around 80%. Thus, 
it is possible to infer that the influence on the accuracy 
of the number of classes in the present study is also 
low.

The qualitative assessment of the confusion matrix 
(Fig. 2, Supplementary Figures 1–6), reveals classifica-
tion mistakes in particular taxa just by looking at wing 
contours. The diagonal of the matrices shows the co-
incidences between the real and the predicted labels: 
if there individuals appear along this diagonal, that 
means the performance of the classifier is better, since 
on this diagonal the coincidences between the true la-
bels and the predictions (true positives) will be found 
(we expect a 1:1 relationship if so). Consequently, on ei-
ther side of these true positives diagonals, classification 
errors (false positives and false negatives) are found. 
True negatives, meanwhile, correspond to all the true 
instances found on the diagonal, different from the one 
of interest (Harrington, 2012).

Unlike the present investigation, on which the shape 
of the contour of the wings from 111 genera of drag-
onflies was exclusively evaluated, and seven classifiers 
tested, Kuhn (2016) made a classification of 26 genera 
of dragonflies, in which characteristics such as color, 
texture and shape of the wings were included, reaching 
a maximum accuracy of 91%, using only the Random 
Forest algorithm classifier. We suggest a possible ex-
planation for the difference found in accuracy between 

Kuhn’s (2016) and our data is due to additional charac-
ters assessed for the differentiation of species (texture, 
coloration and wing proportions). Our data suggests 
that the contour used here by itself does not provide 
enough information to obtain the accuracy found in 
Kuhn (2016). Thus, we suggest that the combination of 
the wing contours and the wing attributes previously 
assessed by Kuhn (2016) (including a morphometric 
analysis using 15 measurements, a chromatic analysis 
and, finally, the use of the Gabor wavelet transforma-
tion on the images with different rotations and scales) 
might increase the accuracy of the automatic identifica-
tion for these taxa. In addition, we did find that the LDA 
classifier has better performance, suggesting the need 
to assess other classifiers than RF, which include all 
the possible wing attributes to test their performance 
in the classification. We expect to combine our results 
with the previous wing attributes tested by Kuhn (2016) 
for the automatic identification to keep decreasing the 
taxonomic impediment in the current biodiversity cri-
sis. 

The largest number of misclassifications of our data 
are centered on the tested genera within the aniso
pteran families Gomphidae and Libellulidae and the 
zygopteran Coenagrionidae and Lestidae families. This 
is interesting as Gomphidae, Libellulidae and Coenagrio
nidae are the most species rich families in the Odona-
ta. Our results suggest that most of the confusion and 
classification errors are distributed among particular 
groups within families belonging to the same suborder 
(Fig. 3). In particular, there are two confusion groups 
that belong to the Anisoptera suborder (Fig. 3). In the 
first group (Fig. 3A, red square), six genera of the Gom-
phidae family are included, while in the second group 
(Fig. 3A, blue square), there are two genera that belong 
to the Libellulidae family, two genera of the Aeshnid-
ae family and one of the Gomphidae family. Likewise, 
Kuhn’s (2016) confusion matrix has similar classification 
mistakes to the ones we observed here (Fig. 3). For ex-
ample, the genus Erythemis with the classifier and attri-
butes tested by Kuhn (2016) was confused with species 
of the genera Pachydiplax and Libellula; in our results it 
was also confused with Libellula and a couple of aesh-
nids (Fig. 3A). For Zygoptera, our observed confusion 
occurs mainly between the Lestidae and Coenagrioni-
dae families (Fig. 3B). The occurrence of greater confu-
sion within this suborder may be a consequence of the 
low level of variation in their shape between families. 
This fact, in turn, underscores the need for identifica-
tion of the Zygoptera facilitated by characteristics such 
as coloration, types of joints of the veins in the wings, 
patterns of venation, presence of spines and distribu-
tion of resilin patches (Appel & Gorb, 2014; Hassall, 
2014).

Interestingly, our data suggest that these confusion 
groups have similar wing contours, which can lead us to 
look for possible hypotheses that explain these similari-
ties among these taxa. Some explanation can be due to 
their ecology: for example, within the Anisoptera there 
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Table 1. Genera found by each classifier and number of individuals in the dataset. The first column (“Genus”) has the names of 
the 111 genera included in the dataset. The Xs mark where the class was found and the dark gray empty cells show the classes 
(genera) that were absent in the classification report, for each of the classifiers.

Genus Count LDA LR NB CART KNN SVM RFC

Acanthagrion 16 x x x x x x x
Aeshna 131 x x x x x x x
Amphiagrion 1 x
Amphipteryx 1 x
Anax 39 x x x x x x x
Anisagrion 2 x x x x x x x
Aphylla 33 x x x x x x x
Archilestes 20 x x x x x x x
Argia 85 x x x x x x x
Arigomphus 81 x x x x x x x
Basiaeschna 27 x x x x x x x
Boyeria 11 x x x x x x x
Brachymesia 22 x x x x x x x
Brechmorhoga 4 x x x x x x x
Calopteryx 149 x x x x x x x
Cannaphila 4 x x
Castoraeschna 1 x
Celithemis 149 x x x x x x x
Cordulegaster 90 x x x x x x x
Cordulia 8 x x x x x x x
Coryphaeschna 25 x x x x x x x
Crocothemis 2 x x
Cyanallagma 3 x x x x x x x
Diastatops 13 x x x x x x x
Didymops 6 x x x x x x x
Dorocordulia 17 x x x x x x x
Drepanoneura 1 x x x x x x x
Dromogomphus 45 x x x x x x x
Dythemis 14 x x x x x x x
Enallagma 264 x x x x x x x
Epiaeschna 22 x x x x x x x
Epipleoneura 2 x
Epitheca 130 x x x x x x x
Erpetogomphus 57 x x x x x x x
Erythemis 174 x x x x x x x
Erythrodiplax 107 x x x x x x x
Euthore 1 x x x x x x x
Fluminagrion 1 x x x x x x x
Gomphaeschna 17 x x x x x x x
Gomphurus 160 x x x x x x x
Gynacantha 29 x x x x x x x
Hagenius 17 x x x x x x x
Helocordulia 13 x x x x x x x
Hesperagrion 15 x x x x x x x
Hetaerina 75 x x x x x x x
Heteragrion 2
Hylogomphus 62 x x x x x x x
Idiataphe 1 x x x x x x x
Iridictyon 3 x x x x x x x
Ischnura 83 x x x x x x x
Ladona 55 x x x x x x x
Lanthus 21 x x x x x x x
Leptobasis 2 x
Lestes 187 x x
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Genus Count LDA LR NB CART KNN SVM RFC

Leucorrhinia 70 x x x x x x x
Libellula 342 x x x x x x x
Macrodiplax 9 x x x x x x x
Macromia 40 x x x x x x x
Macrothemis 43 x x x x x x x
Mecistogaster 1
Mesamphiagrion 4 x x x x x x x
Miathyria 17 x x x x x x x
Micrathyria 84 x x x x x x x
Misagria 2 x x x x x x x
Mnesarete 5 x x x x x x x
Nannothemis 18 x x x x x x x
Nasiaeschna 14 x x x x x x x
Nehalennia 1 x
Neoerythromma 1
Neoneura 1 x
Nephepeltia 6 x x x x x x x
Neurocordulia 7 x x x x x x x
Octogomphus 9 x x x x x x x
Oligoclada 1 x
Ophiogomphus 88 x x x x x x x
Oplonaeschna 1
Orthemis 35 x x x x x x x
Pachydiplax 68 x x x x x x x
Palaemnema 3 x
Paltothemis 14 x x x x x x x
Pantala 85 x x x x x x x
Perithemis 81 x x x x x x x
Phanogomphus 233 x x x x x x x
Phyllocycla 17 x x x x x x x
Phyllogomphoides 29 x x x x x x x
Plathemis 88 x x x x x x x
Polythore 220 x x x x x x x
Progomphus 62 x x x x x x x
Protoneura 4 x x x x x x x
Pseudoleon 18 x x x x x x x
Remartinia 1 x x x x x x x
Rhionaeschna 3
Rhodopygia 2 x x x x x x x
Rimanella 1 x x x x x x x
Somatochlora 55 x x x x x x x
Staurophlebia 1 x x x x x x x
Stenocora 1 x x
Stenogomphurus 7 x x x x x x x
Stylogomphus 18 x x x x x x x
Stylurus 38 x x x x x x x
Sympetrum 146 x x x x x x x
Tachopteryx 10 x x x x x x x
Tanypteryx 3 x x x x x x x
Tauriphila 21 x x x x x x x
Telebasis 6 x x x x x x x
Tholymis 9 x x x x x x x
Tramea 86 x x x x x x x
Triacanthagyna 13 x x x x x x x
Tuberculobasis 1
Uracis 9 x x x x x x x
Zenithoptera 4 x x x x x x x

Total Not found 11 19 19 12 17 19 19
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are an array of flight behaviors (fliers, gliders and perch-
ers; Corbett & May, 2008) and these flight styles can 
be reflected in the similarities found in wing contours 
within both our observed confusion groups. For exam-
ple, in migratory species of libellulids’ hindwings can 
show convergence towards a wing planform that favors 
the gliding flight as an energy saving strategy (Suarez-
Tovar & Sarmiento; 2016). For zygopterans, their flight 
is more passive, and their ability to disperse might be 
associated with slow flight or overflight (Bomphrey et 
al., 2016), which would explain any similarities in wing 
contours for coenagrionids and lestids. Comparisons 
of the damping ratios and natural frequencies of two 
dragonfly and two damselfly species, shows that for the 
anisopterans damping properties between fore- and 
hindwings were significantly different, while in zygo
pterans there were no or very weak differences in the 
damping ratios between both wings, suggesting that 
the structural design and wing shape can influence 
the aerodynamics of their flight behaviors (Lietz et al; 
2021).  In addition, functional morphology traits of the 
wings, like types of joints of the wing veins, spines and 
presence of resilin, a protein that gives certain flexibility 
to the wings of insects can be evaluated in this groups, 
like previously done by Appel and Gorb (2014) to un-
derstand the wing contour similarities in these taxa. 

Overall, our results suggest that the wing contours by 
themselves can discriminate with a moderate accuracy 
and precision, in comparison with other wing attributes 
obtained using high resolution images. In addition, we 
tested multiple classifying algorithms for the contours, 
where LDA had the best performance. 

Acknowledgements

The authors would like to acknowledge the funding from NSF Grant 
#1564386: ODOMATIC: Automatic Species Identification, Function-
al Morphology, and Feature and NSF DBI WK Postdoctoral Grant 
#16116642: Leveraging face-detection methods to identify insects 
from field photos, automatically.

References

Anaconda Software Distribution. (2016). https://anaconda.com
Appel, E. & Gorb, S. N. (2014). Zoologica Comparative functional 

morphology of vein joints in Odonata. Zoologica, 159.
Blidh, H. (2016). Python implementation of “Elliptic Fourier Features 

of a Closed Contour.” https://pyefd.readthedocs.io/en/latest/
Bomphrey, R. J., Nakata, T., Henningsson, P. & Lin, H. T. (2016). Flight 

of the dragonflies and damselflies. Philosophical Transactions of 
the Royal Society B: Biological Sciences, 371(1704). doi:10.1098/
rstb.2015.0389

Brownlee, J. (2017). Master Machine Learning Algorithms (1.12). 
Machine Learning Mastery. https://machinelearningmastery.
com/master-machine-learning-algorithms/

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. 
& Palmer, T. M. (2015). Accelerated modern human-induced spe-
cies losses: Entering the sixth mass extinction. Science Advances, 
1, 5. doi:10.1126/sciadv.1400253

Corbett, P. S. & May, M. L. (2008). Fliers and perchers among Odona-
ta: dichotomy or multidimensional continuum? A provisional re-
appraisal. International Journal of Odonatology, 11(2), 155–171. 
doi:10.1080/13887890.2008.9748320

Córdoba-Aguilar, A. (2008). Dragonflies and Damselflies: Model Or-
ganisms for Ecological and Evolutionary Research. In Dragonflies 
and Damselflies: Model Organisms for Ecological and Evolutionary 
Research. doi:10.1093/acprof:oso/ 9780199230693.001.0001

Gandhi, R. (2018). Support Vector Machine—Introduction to Ma-
chine Learning Algorithms. Towards Data Science. https://to-
wardsdatascience.com/support-vector-machine-introduction-
to-machine-learning-algorithms-934a444fca47

Garrison, Rosser W., von Ellenrieder, N. & Louton, J. A. (2006). Drag-
onfly genera of the New World: an illustrated and annotated key 
to the Anisoptera. In Choice Reviews Online. Johns Hopkins Uni-
versity Press.

González, A. (2009). El conocimiento sistemático impedimento ta-
xonómico la biodiversidad y. Revista de La Sociedad Española de 
Biologia Evolutiva, 4(1), 19–32.

Harrington, P. (2012). Machine Learning in Action Ill MANNING Shel-
ter Island. Manning Publications Co.

Hassall, C. (2014). Continental variation in wing pigmentation in ca-
lopteryx damselflies is related to the presence of heterospecifics. 
PeerJ, 2014(1), e438. doi:10.7717/peerj.438

Heckman, C. W. (2006). Encyclopedia of South American Aquatic In-
sects: Odonata – Anisoptera. In Encyclopedia of South American 
Aquatic Insects: Odonata – Anisoptera. The Netherlands: Spring-
er. doi:10.1007/978-1-4020-4802-5

Heckman, C. W. (2008). Encyclopedia of South American Aquatic In-
sects: Odonata – Zygoptera. In Encyclopedia of South American 
Aquatic Insects: Odonata – Zygoptera. The Netherlands: Spring-
er. doi:10.1007/978-1-4020-8176-7

Kalkman, V. J., Clausnitzer, V., Dijkstra, K. D. B., Orr, A. G., Paulson, 
D. R. & van Tol, J. (2008). Global diversity of dragonflies (Odona-
ta) in freshwater. Hydrobiologia, 595(1), 351–363. doi:10.1007/
s10750-007-9029-x

Koh, L. P., Dunn, R. R., Sodhi, N. S., Colwell, R. K., Proctor, H. C. & 
Smith, V. S. (2004). Species Coextinctions and the Biodiversity 
Crisis. Science, 305(September), 1632–1635. doi:10.1126/sci-
ence.1101101

Kuhn, W. R. (2016). Three approaches to automating taxonomy, 
with emphasis on the Odonata (dragonflies and damselflies). 
(Thesis). Rutgers, The State University of New Jersey.

la Salle, J., Williams, K. J. & Moritz, C. (2016). Biodiversity analysis in 
the digital era. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 371(1702). doi:10.1098/rstb.2015.0337

Lietz, C., Schaber, C.F., Gorb, S.N. et al. (2021) The damping and 
structural properties of dragonfly and damselfly wings during 
dynamic movement. Commun Biol 4, 737. doi:10.1038/s42003-
021-02263-2

Lorenzo-Carballa, M. O. & Cordero Rivera, A. (2012). Odonatos. In 
P. Vargas & R. Zardoya (Eds.), El árbol de la Vida: sistemática y 
evolución de los seres vivos. pp. 293–301.

Moore, N. W. (1997). Dragonflies: Status Survey and Conservation 
Action Plan. Gland, Switzerland, and Cambridge, UK: IUCN. 

Narayan, Y. (2021). Hb vsEMG signal classification with time domain 
and Frequency domain features using LDA and ANN classifier. 
Materials Today: Proceedings, 37, 3226–3230. doi:10.1016/j.
matpr.2020.09.091

Pal, K. K. & Sudeep, K. S. (2016). Preprocessing for image classifica-
tion by convolutional neural networks. 2016 IEEE International 
Conference on Recent Trends in Electronics, Information & Com-
munication Technology (RTEICT), 1778–1781. doi:10.1109/RTEI-
CT.2016.7808140

https://anaconda.com
https://pyefd.readthedocs.io/en/latest/
https://doi.org/10.1098/rstb.2015.0389
https://doi.org/10.1098/rstb.2015.0389
https://machinelearningmastery.com/master-machine-learning-algorithms/
https://machinelearningmastery.com/master-machine-learning-algorithms/
http://doi.org/10.1126/sciadv.1400253
https://doi.org/10.1080/13887890.2008.9748320
https://doi.org/10.1093/acprof:oso/9780199230693.001.0001
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://doi.org/10.7717/peerj.438
https://doi.org/10.1007/978-1-4020-4802-5
https://doi.org/10.1007/978-1-4020-8176-7
https://doi.org/10.1007/s10750-007-9029-x
https://doi.org/10.1007/s10750-007-9029-x
https://doi.org/10.1126/science.1101101
https://doi.org/10.1126/science.1101101
https://doi.org/10.1098/rstb.2015.0337
https://doi.org/10.1038/s42003-021-02263-2
https://doi.org/10.1038/s42003-021-02263-2
https://doi.org/10.1016/j.matpr.2020.09.091
https://doi.org/10.1016/j.matpr.2020.09.091
https://doi.org/10.1109/RTEICT.2016.7808140
https://doi.org/10.1109/RTEICT.2016.7808140


Sáenz Oviedo, Kuhn, ... & Sanchez-Herrera Are wing contours good classifiers for automatic identification in Odonata?

106International Journal of Odonatology │ Volume 25 │ pp. 96–106

Paulson, D. R., Schorr, M. & Deliry, C. (2021). World Odonata List 
· University of Puget Sound. https://www2.pugetsound.edu/
academics/academic-resources/slater-museum/biodiversity-
resources/dragonflies/world-odonata-list2/ 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 
Grisel, O., .... Duchesnay, E. (2011). Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Research, 12(85), 
2825–2830. 

Raybaut, P. (2009). Spyder IDE (4.2.1). Pythonhosted. https://www.
spyder-ide.org/

Samways, M. J. & Steytler, N. S. (1996). Dragonfly (Odonata) dis-
tribution patterns in urban and forest landscapes, and recom-
mendations for riparian management. Biological Conservation. 
doi:10.1016/S0006-3207(96)00032-8

Shahriar, M. T. & Li, H. (2020). A Study of Image Pre-processing for 
Faster Object Recognition. ArXiv, October 2020. https://arxiv.
org/abs/2011.06928

Sharma, P., Hans, P. & Gupta, S. C. (2020). Classification of plant leaf 
diseases using machine learning and image preprocessing tech-
niques. Proceedings of the Confluence 2020 – 10th International 
Conference on Cloud Computing, Data Science and Engineering, 
480–484. doi:10.1109/Confluence47617.2020.9057889

Suárez-Tovar, C. M. & Sarmiento, C. E. (2016), Beyond the wing plan-
form: morphological differentiation between migratory and non-
migratory dragonfly species. Journal of Evolutionary Biology, 29, 
690-703. doi:10.1111/jeb.12830 

Tharwat, A., Gaber, T., Ibrahim, A. & Hassanien, A. E. (2017). Linear 
discriminant analysis: A detailed tutorial. AI Communications, 
30(2), 169–190. doi:10.3233/AIC-170729 

van Rossum, G., & Drake Jr, F. L. (2009). Python 3 Reference Manual. 
CreateSpace. https://dl.acm.org/doi/book/10.5555/1593511

Supplementary material

Supplementary Figure 1. Random Forest Classifier Confusion Matrix.
Supplementary Figure 2. Support Vector Machines Confusion Matrix.
Supplementary Figure 3. K-Nearest Neighbors Confusion Matrix.
Supplementary Figure 4. Classification and Regression Trees Confu-

sion Matrix.
Supplementary Figure 5. Naïve Bayes Confusion Matrix.
Supplementary Figure 6. Logistic Regression Confusion Matrix.
Supplementary Table 1. Taxonomic information of specimens in-

cluded in the analysis.
Supplementary Table 2. Training accuracy scores.
Supplementary Table 3. Summary of classification report: Number 

of classes found, accuracy, precision, recall, F1 score and support 
values of the classifiers tested.

Supplementary Table 4. ANOVA results for accuracy scores compari-
son.

Supplementary Table 5. Tukey multiple comparisons test for accu-
racy scores.

Supplementary Table 6. ANOVA results for F1 scores comparison. 
Supplementary Table 7. Tukey multiple comparisons test for F1 

scores.

https://www2.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2/
https://www2.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2/
https://www2.pugetsound.edu/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2/
https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://doi.org/10.1016/S0006-3207(96)00032-8
https://arxiv.org/abs/2011.06928
https://arxiv.org/abs/2011.06928
https://doi.org/10.1109/Confluence47617.2020.9057889
https://doi.org/10.1111/jeb.12830
https://doi.org/10.3233/AIC-170729
https://dl.acm.org/doi/book/10.5555/1593511
http://doi.org/10.48156/1388.2022.1917184

	Title
	Abstract
	Introduction
	Materials and methods 
	Results
	Discussion 
	Acknowledgements 
	References 
	Supplementary material 

