AGRION is Worldwide Dragonfly Association’s (WDA’s) newsletter, published twice a year, in January and July. The WDA aims to advance public education and awareness by the promotion of the study and conservation of dragonflies (Odonata) and their natural habitats in all parts of the world. AGRION covers all aspects of WDA’s activities; it communicates facts and knowledge related to the study and conservation of dragonflies and is a forum for news and information exchange for members. AGRION is freely available for downloading from the WDA website at http://ecoevento.uvigo.es/WDA/dragonfly.htm. WDA is a Registered Charity (Not-for-Profit Organization), Charity No. 1066039/0.

Editorial
Keith Wilson [kdpwilson@gmail.com]

The 6th WDA International Congress of Odonatology was very successfully held in Xalapa, Veracruz, Mexico 7-12 June 2009 and afterwards a post symposium tour to various locations within Veracruz State was enjoyed by many of the conference delegates from 13-16 June. The principle organisers Rodolfo Novelo-Gutiérrez (Instituto de Ecología A.C.), Enrique González-Soriano (Instituto de Biología UNAM) and Alex Córdoba-Aguilar (Instituto de Ecología UNAM) did a great job in organising and convening the Congress. They must be warmly thanked for the smooth running of all the events despite the very real threats posed by swine flu during the preceding months. They held their nerve and ensured the conference was well attended and provided a full and varied programme. Mike Parr has kindly provided a summary report of the Congress plus the mid- and post-symposium tours for this issue. Following the conference opening ceremony, Mike gave a memorial address in tribute to Philip Corbet, the text of which is provided here. A list of Philip Corbet’s Odonata publications is also provided. Other articles included in this July 2009 edition of AGRION include three book reviews and various accounts of odonates from many parts of the World including Africa, Australia, China, Malaysia the Neotropics, Oman, Philippines, Sri Lanka, Thailand and Vietnam.

A web-based travel report, which provides a brief summary of the Xalapa conference and the mid- and post-symposium tours has been compiled by Erland R. Nielsen. The report includes many conference photos and many excellent odonate photographs taken during and after the Congress. Erland’s report can be accessed from the link provided here: [http://home1.stofanet.dk/erland_refling/danish_dragonflies.htm]. Click the menu located left, under Travel Reports, and select Mexico.

For the next issue of AGRION, to be published at the beginning of January 2010, please send me or Graham Reels [gtreels@cyberdude.com] your contributions. All articles, information and news items related to dragonflies or of interest to WDA members are most welcome and will be considered for publication. Please send a Word file by email (preferably) or on disk by post. Please do not forward any original artwork but send a soft copy, ideally in a compressed format e.g. ‘jpeg’ or ‘gif’, or as a file on disk if sent by post.

In keeping with the practice adopted for WDA’s official organ, the International Journal of Odonatology a dragonfly photo now appears on the front cover of each issue of AGRION. If you have a photo illustrating any rarely observed aspect of dragonfly biology, or an unusual species, or simply a stunning dragonfly shot, please submit it for consideration for publication in AGRION.

Message from a new member
Colin Adams [colinpauladams@googlemail.com]

I am an amateur enthusiast living in Lancashire, England. My wife and I spent holidays in eastern Thailand and Hainan this winter, in my case so as to see dragonflies. So I decided to join the WDA. My website includes a blog of what I see, along with photographs. It is linked from the WDA website.

I have also created a discussion forum there for WDA members. Please email me for permission to view/post messages (you should first register a login-id on the website and then tell me what it is in your email). I hope this will increase communication between WDA members (and allow me to ask pose of questions to the professionals).

Cover photo: Platycnemis latipes group-oviposition, 22 June 2008, Rio Tietar, Extremadura, Spain, taken by Erland Reffing Nielsen; judged to be the winning photo for the Photo Competition held at the 6th WDA International Congress of Odonatology, Xalapa, Mexico, 13-16 June 2009.
AGRION CONTENTS

Editorial 36
Message from a new member 36
Message from the President 37
Details of new members & change of addresses 38
Worldwide Dragonfly Association Email/Postal Ballot July 2009 39
Book Reviews 40
Dennis Paulson, 2009. Dragonflies and Damselflies of the West 42
Michael J. Samways, 2008. Dragonflies and Damselflies of South Africa. 43
Additional records for Oman 45
Red-veined dropwings: how long do they live? 48
Rediscovery of Austrocordulia leonardi (Sydney Hawk) in the suburbia of Sydney 50
Viridithemis viridula Fraser, 1960 – discovery of the first known male 54
Additional records of Lyriothemis defonsekai van der Poorten 2009 in Sri Lanka 56
Databasing dragonflies: State of knowledge in the Neotropical region 58
Some Odonata from the Northern Sierra Madre Natural Park, Isabela, Luzon, Philippines 72
Some new provincial records of Odonata made in Thailand in 2007-2009 and a new record for Vietnam 75
Observations of the oviposition behaviour of four species of Euphaea Selys 80
The 6th WDA International Congress of Odonatology, Xalapa, Mexico, 7-12 June 2009 84
A few words about Phil Corbet 88
Philip S. Corbet - List of publications including observations on Odonata 90

Message from the President
Wolfgang Schneider [wolfgang.schneider@senckenberg.de]

Although only a few weeks have passed since the 6th International Congress of Odonatology in Xalapa, Mexico, it is already time for me to address the membership. As there will be a narrative report by WDA’s Inaugural President, Mike Parr, on our Mexico experience in this issue of AGRION, I will restrict my remarks to Board matters.

When Gordon Pritchard became President in Namibia in 2007, WDA entered its second decade. Under his Presidency the Board had a number of important topics on the agenda of which the “Merger” of the two international journals and the future of IJO soon became the top priorities.

As already reported by Gordon in his last message, there is now another reason to publish in IJO: Due to the dedication, perseverance, and professionalism of our Editor, Reinhard Jödicke, the journal became ISI listed in 2008. Reinhard’s editorial team and the Board of WDA will continue to develop and secure the future of IJO.

Despite the Past President’s dedicated efforts, the merger was not realised. But one positive outcome of
the intensive and time consuming negotiations is that in the future there will be only one biennial international meeting and we hope that this agreement will enable many more odonatologists to attend. Our future symposia, starting with the 2011 meeting in Japan will be named by the year only, e.g. "The 2011 International Congress of Odonatology". We shall continue the congresses as we have always done, including the Board and General Biennial Meetings as required by the Constitution.

I am pleased to inform you that for the period after Japan WDA already has two invitations, one for 2013 in Freising, Germany, by Florian Weihrauch, and one for 2015 for Colombia by Catalina Amaya-Perilla. Richard Rowe our Congress Co-ordinator will keep you informed.

I should also mention two other noteworthy upcoming events: In September Elisa Riservato will arrange for a meeting of Italian Odonatologists in Bolzano during which the Italian Society of Odonatology will be founded, and, in 2010 the first European Congress of Odonatology will be organized by Sónia Ferreira in Portugal. Stay tuned to get the latest news!

As far as the administration of the society is concerned, we had an unusual situation in early 2009 in that two members of the Board decided to retire after their names had appeared in the Board's list of nominations in AGRION 12(2): Linda Averill as Secretary and Viola Clausnitzer as Trustee for Conservation. Unfortunately there are no provisions in the Constitution for such situations (we have to think about an amendment and I am already working on it). One vacancy could be filled immediately by a decision of the Board following clause G3 of the Constitution: Vincent Kalkman is the successor of Viola Clausnitzer for Conservation issues. Clause G6, would have allowed the new Board to continue without a Secretary but for obvious reasons this seemed not advisable. During a meeting in May this year held in Calgary (see photograph), Gordon and I tried to solve this problem constitutionally. After extensive discussions within the Board, we asked Natalia von Ellenrieder (elected via postal ballot to the Board for 2009-2011) to accept a pro tem appointment as Secretary and then have this ratified through a ballot of all members of the WDA. Members present at the BGM in Mexico supported and welcomed this decision, and Natalia is already fulfilling her duties as Secretary. Please read the enclosed ballot form and make use of your right to vote.

I would like to avail myself of this opportunity to thank all members of the previous Board for their tremendous support to the WDA, especially to the retiring members: To Hidenori Ubukata, who served the Board for 10 years, to Linda Averill for her hard work and patience as Secretary in the last eight years, and to Viola Clausnitzer for her outstanding achievements in the field of conservation. At the same time I welcome our new Board members, Natalia von Ellenrieder, Vincent Kalkman and Mamoru Watanabe. Very special thanks go to Valerie and Gordon Pritchard for their friendship and hospitality. I spent a busy and very pleasant week at their home in Calgary in preparation for the Mexico meeting.

In his report for the 6th BGM Gordon emphasised the WDA’s constitutional aims “to advance public education and awareness by the promotion of the study and conservation of dragonflies (Odonata) and their natural habitats in all parts of the world”, and I know that I can count on your contributions and support for these aims over the next two years.

Wolfgang Schneider

Details of new members & change of addresses

Colin Adams 14 Colman Court Preston PR1 8DL UK colin@colina.demon.vo.uk
Nancy van der 17 Monkton Avenue Toronto Ontario Canada M8Z nmvgdp@netscape.net
Dr Theodor Benken Danzigerstrasse 6 D-77855 Achern Germany theodor@benkenhome.de
Enrique Gonzalez Soriano Instituto de Biologia, UNAM, Departamento de Zoologia, A.P. 70-153, C.P. 04510, Mexico
Nancy McIntyre Dept of Biological Sciences, Texas Tech University, Lubbock TX 79409-3131, USA nancy.mcintyre@ttu.edu
Craig Emmis Viewfield, Willow Hall Lane, Thorney, Peterborough PE6 0QN, UK viewfield444@btinternet.com
Javier Muzon ILPLA CC712 1900 La Plata, Argentina muzon@ilpla.edu.ar
Federico Lozano ILPLA, CC 712 1900 La Plata, Argentina federico.colozano82@yahoo.com.ar
Pablo Pessaco LIESA, Sarmiento 849, 9200 Esquel, Chubut, Argentina pablo.pessacca@yahoo.com.ar
Kyoshi Inoue 5-9 Fuminosato 4 chome Abeno-Ku Osaka 545 0004 JAPAN ks-inoue@mx2.nisig.net
Chang Tsung Wei No 15, Ln 31, Longsing St, Shulin City, Taipei County 238, Taiwan s88b1001@gmail.com
Dr Relf L Price III 3521 Pueblo Drive, Los Alamos NM 87544 USA relf@lanl.gov
Gyorgy Devai Zelisky Daniel u 18 H 4033 Debrecen Hungary devaigy@delfin.klte.hu
Change of Address
Martin Lemke Burgstr 5 D - 66453 Gersheim-Medelsheim Germany
Stanislav Gorb Dept Functional Morphology & Biomechanics Zoological Inst. & Botanischen Garten D24098 Kiel, Germany

38
This is important, please read and use your vote!

Worldwide Dragonfly Association Email/Postal Ballot July 2009

Dear members of WDA,
In early 2009 our Secretary Linda Averill decided to retire after her name had appeared in the Board’s list of nominations in AGRION 12(2); for details please consult ‘Message from the President’ in this issue. Clause G6 of the Constitution would have allowed the new Board to continue without a Secretary but this seemed not advisable. After extensive discussions within the Board, we asked Natalia von Ellenrieder (elected via postal ballot to the Board for 2009-2011) to accept a pro tem appointment as Secretary and then have this ratified through a ballot of all members of the WDA. Please make use of your right to vote. If you agree please place an X next to ‘YES’, otherwise an X next to ‘NO’; family members have 2 votes.

I agree with the Board’s decision to appoint the Trustee Natalia von Ellenrieder as Secretary of WDA for the period 2009-2011.

Yes ()
No ()

1. Email your vote to wolfgang.schneider@senckenberg.de

2. For a secret postal ballot completed forms should be returned to the President of WDA (address below) before 31 August 2009.

Wolfgang Schneider
Graefstrasse 51
D-60486 Frankfurt
Germany
The Collins New Naturalist Library began in 1945 with the publication of ‘Butterflies’ by E.B. Ford (Ford, 1945). This volume, revised in 1975 but not yet superseded, was to establish a new genre in natural history writing. The aim of all New Naturalist books has been to present to the reader an account of a well defined topic relating to the British Isles. The books seldom baulk at difficult scientific concepts, but are invariably written in an easy literary style accessible to the generally educated reader. Volumes devoted to Odonata have been number 41, the initial volume titled Dragonflies (Corbet et al, 1960), and the present volume, number 106. The series has long been a target for collectors; hence the publication of any new volume is guaranteed to meet with considerable interest and brisk sales.

Dragonflies is a substantial, well-produced, octavo volume, arranged in 10 chapters with four supporting appendices, a comprehensive glossary and over 1000 citations. Although its central theme is dragonflies of the British Isles and their biology, there runs through the entire book a strong subtext supporting nature conservation. This feature is one of several which clearly distinguish this book from the original ‘Dragonflies’ (Corbet et al 1960). However some similarity remains. As in that book, a concise introduction is followed by a long chapter dealing with the 54 species found in the British Isles. Here the entire fauna is first characterised with reference to geographical distribution (5 categories), and habitat preferences (also 5 categories). After this come species accounts, written as continuous text with adults and larvae of representative species depicted photographically. It is a great benefit to be able to write so comprehensively about a fauna as a whole, including notes on its constituent species, without being unduly troubled by the minutiae of species identification. Several books in print already perform this function perfectly well (e.g. Brooks, 2004) and to these we are directed. Instead, each dragonfly is introduced to us in terms of its general character, its presence, its life history and its relation to the landscape. The reader gains an overview that can seldom be obtained from formulaic field guides.

The core of the book, chapters 3-9, follows almost exactly the same sequence of topics presented in Philip Corbet’s encyclopaedic Dragonflies, Behaviour and Ecology of Odonata (Corbet, 1999). Approximately half the text is devoted to immature life stages and half to adult biology. However this is in no way a summary or précis of the earlier work. It is restricted in scope, concerning itself primarily with the biology of the species of the British Isles, drawing also on examples from Europe, America and sometimes further afield where appropriate. Therefore much detail relevant only to poorly understood tropical species is omitted, limiting the subject matter to a far more coherent and manageable body of knowledge. Moreover the style in which the information is presented is entirely different. Whereas Corbet (1999) is written in a purely technical style, with numerous subheadings, more suited for convenient reference, the prose of this book reads with fluid continuity.

The final chapter gives us a comprehensive account of odonatology in Britain past and present. This begins with a well-illustrated history, including the contributions of Thomas Mouffet (a contemporary of William Shakespeare), John Ray, Carolus Linnaeus, Moses Harris and others, ending with recent luminaries such as Douglas Kimmins, Cyril Hammond and Cynthia Longfield, all three of whom many readers will still remember personally. There follows a detailed account of the activities of the hugely successful British Dragonfly Society, with a penetrating analysis of dragonfly conservation in the British Isles, (well supported in Appendix 4 by detailed
Above all, *Dragonflies* is a good read. It can and should be read from cover to cover, as much for pleasure as for information, and as with a good novel this pleasure increases with a second or third reading. The prose has a measured, unassuming elegance which is itself a lesson in style. Reading it, one becomes totally immersed in the subject. One senses always an underlying latent enthusiasm, which can almost see the gleam in the eyes of the authors as they develop their theme. Occasionally they permit themselves a vivid simile – *Coenagrion* ‘like shards of the sky’ – page 42, or a brief passage of lyrical and evocative beauty – “At the first glimmer of morning light, just before the last bat returns to roost, adults begin to vibrate their wings…” – page 158. Such imagery is used with nicely judged restraint. It reaches the reader almost subliminally and never distracts from the essential factual content.

Although the book covers some difficult concepts, all technicalities are clearly and effectively explained in a series of boxes which are insinuated almost seamlessly into the body of the text. Moreover, although meticulously referenced, citations are identified by a small numeral, which can easily be traced via a key near the end of the book, but in no way impedes the flow of the text. The book is also illustrated throughout by excellent and informative colour photographs, principally by Robert Thompson, placed in close juxtaposition to the text. Also deserving special mention are several stunning shots of dragonflies in flight by Steve Cham. This said, the production is attractive, not lavish, and the colour photographs enhance and support the text, rather than creating a distraction. Importantly and presciently, every chapter is ended by a section on ‘Opportunities for investigation’ suggesting activities likely to produce fruitful research results. This book will inspire and guide useful research for the next generation of odonatologists, especially those with limited access to sophisticated scientific equipment.

The book has a very few typographical and formatting errors, which are unimportant and occur in all books. However one error in the historical account is liable to cause confusion and thus requires clarification: on page 263 William Kirby (1759-1850), ‘the father of entomology’ is credited with describing *L. dryas* was in fact described by William Forsell Kirby (1844-1912), independently famous for his work on butterflies, dragonflies, and translation of the Finnish national epic, the Kalevala.

It is a regrettable fact that even amongst the ranks of gentle naturalists, disputes and vehement polemics of one sort or another arise rather frequently. Two current bones of contention in odonatology concern firstly, the proper English naming of the Anisoptera, or ‘true dragonflies’, for which the authors propose the neologism, ‘warriorflies’, and secondly, the morality of capturing and killing specimens for scientific purposes. The authors have chosen to meet these issues head on, discussing both at length in the introduction. My only concern is that this approach may alienate some readers from the outset. More timid authors may have judged it better to postpone a discussion of collecting until the end of the book. It would then be easy to argue, to those opposed to collecting, ‘much of what you have just read would never have been discovered without the considered capture and killing of specimens’.

But these faults, if such they are (do we need timid authors?), are very minor indeed, especially when contrasted with the immensity, the scope, the authority, and the literary skill of what will remain for generations a classic and essential reference work. If you do not approve the term ‘warriorflies’, read on. The term does not appear once in the body of the text. If you do not believe dragonflies should be collected, read on, and you will come to understand the importance of voucher specimens for effective conservation policy. If you are already an expert on the dragonflies of the British Isles, and really do know everything contained within the book, it will still be an imestimable pleasure to revisit this knowledge and see it so concisely, elegantly and masterfully organised and effectively illustrated. Most of us however, no matter how much we think we know about Odonata generally or the British fauna in particular, will find much to learn.

Finally, on a very personal note, I cannot pretend that the task of writing this review has not cost me some sadness. On the one hand, reading the book was a great delight, for everywhere it resonates with the authentic voice of Philip. Yet I cannot help but be grieved by the thought that that voice is at last stilled. Philip was working on this book on the morning of the day of his death. Surely there can be no better testament to a life lived richly and to the full. Although by then the book was nearly finished, it is inevitable that a myriad of small matters would still have had to be addressed. We all surely owe a great debt of gratitude to Steve Brooks, that he was able to bring the book to final publication on time, and in near perfect form. Looking at this volume, I am reminded of Sir Christopher Wren’s epitaph in St Paul’s Cathedral London – *LECTOR, SI MONUMENTUM REQUIRIS CIRCUMSPICE* (reader, if you seek his monument, look around you) – By direct analogy, I am tempted to inscribe the flyleaf of my personal copy of *Dragonflies* with these words – ‘If you seek his monument, read on’.

References
Dennis Paulson, 2009. Dragonflies and Damselflies of the West

Klaas-Douwe B. Dijkstra [dijkstra@naturalis.nl]

Naturalis, Postbus 9517, 2300 RA Leiden

The flow of new odonate field guides is impressive worldwide, but nowhere more so than in North America. However, most of the production has had strong regional or taxonomic limitations. For instance, possibly the finest (Lam 2004) and certainly the most psychedelic (Acorn 2004; *Flying Neon Toothpicks in the Grass*) odonate guides ever, dealt with Zygoptera only. Also the only comprehensive North American guide so far, the classic *Dragonflies through Binoculars* (Dunkle 2000), treated just a single suborder (Anisoptera). Even a region like Northeast Ohio, smaller than The Netherlands, boasts a sublime fieldguide, uniquely combining stunning photos and plates of all species (Rosche et al 2008). This example shows why the ‘field’ of so many North American ‘guides’ is so small: there are 71 Dutch species; this corner of the Midwest is home to the exact double. The guide for Europe, Northwest Africa and western Turkey includes only twenty species more (Dijkstra & Lewington 2006). The majority of European genera are shared with North America, but while Europeans deal with single species of *Enallagma*, *Ophiogomphus* and *Ephítheca*, Americans have 37, 19 and ten to learn. Not to mention 38 vs. six *Gomphus*, 26 vs. seven *Somatochlora* and 23 vs. three *Libellula* (s.l.) species. Altogether, North America (north of Mexico) is home to 453 species of Odonata. Imagine acquiring photographs of both sexes of all of them and elaborating on all the distinguishing details...

But change is coming, and Dennis Paulson is making it happen. Even Paulson has had to split the continent in two to handle all species, but the areas covered and their species overlap is so great, that his *Dragonflies and Damselflies of the West* is the first truly comprehensive North American guide. It treats all 348 species occurring from Texas to California and Alaska, between Hudson Bay and the Pacific. *Dragonflies and Damselflies of the East* will cover 334 species. That Paulson’s West has almost double the area of his East stems from the East’s much greater diversity and the desire to produce two similarly thick volumes. The present book has 535 pages and the maximum weight one wishes to carry: a continent-wide book would approach 700 pages. The book has forty pages of introductory chapters. Highlights are the sections on anatomy, explained with annotated photographs, and collecting. In Europe, collectors are increasingly treated as sadistic freaks - a trend that may develop in America also. Paulson argues that our current knowledge would not exist without collections and that much remains to be learnt. He therefore provides the guidelines to responsibly collect, preserve, label and store dragonflies: a rare but commendable feature for a field guide.

The remaining nine-tenths of the book is devoted to the species texts: just under three pages for every two species. There are short family and genus texts, introducing their diversity and main characteristics, but no tools (such as keys) are provided to guide the user to them. Instead, a more organic (and probably more popular) identification process is anticipated. Flipping through the pages, users will recognise their candidates by their
general appearance and distribution. This is facilitated by two or three excellent photographs of each species, crystal-clear maps and the strongly comparative texts. Each species has a brief description, but more important is the section that indicates exactly which species are most similar and how those should be separated. For the larger complexes, summary tables of key features and detailed line-drawings of important structures (like appendages) are given. The drawings by Natalia von Ellenrieder and Rosser Garrison are renowned for their accuracy, as demonstrated in their indispensable handbook (Garrison et al 2006). Most photographs show the animals in natural poses, which is remarkable considering the over 800 images used. Some individuals were posed, but this is indicated, and while their posture may not be natural, coloration is.

For a European, it is intriguing to compare the Holarctic faunas. Not everything is 'bigger and better' in America! For instance, while there are twice as many American *Aeshna* species, it strikes me how homogeneous they appear. None have the startling coloration of such distinctive Eurasian species as *A. cyanea*, *A. grandis*, *A. isosceles* and *A. viridis*. Species like *Lestes dryas, Aeshna juncea* and *Sympetrum danae* have long been known to occur on both sides of the Atlantic, but looking in this guide I wondered if ‘their’ *Coenagrion angulatum* and *Leucorrhinia hudsonica* differed much from ‘our’ *C. lunulatum* and *L. dubia*. A synonym of the former is even *C. luniferum!* For the sake of widening your odonatological horizon alone, I recommend this book, but its real impact will be in accelerating the already growing North American interest for Odonata. Knowing what to expect, we may now eagerly await *The East*. Only the almost surreal prospect of a guide for all North American Odonata, painted by Ed Lam, can trump this!

References

Note: Discount available from Princeton (see advertisement page 97)

Michael J. Samways, 2008. Dragonflies and Damsel flies of South Africa.

Klaas-Douwe B. Dijkstra [dijkstra@naturalis.nl]

As Odonata gain in popularity with a broad public, new field guides appear like mushrooms all over the globe. After the dragonfly and damselfly volumes by Tarboton & Tarboton (2002, 2005), this is the second publication to deal with all the Odonata of South Africa. Mike Samways has been the foremost authority for the past two decades, aside from his numerous contributions to conservation biology (e.g. Samways 1995, 2005). South Africa harbours about 160 species, including almost thirty endemics. The latter are concentrated in the Cape Floristic Region - of fynbos fame - and includes nine malachite damselflies (*Chlorolestes, Ecchlorolestes*) and four presba dragonflies (*Syncordulia*) that appear ‘Australian’ rather than ‘African’ in their affinities. Other groups, such as the six endemic sprites (*Pseudagrion*) are part of larger Afrotropical radiations. Indeed the unique southern fauna is very different from that of the north-east (e.g. Kruger National Park) where about sixty widespread tropical species just penetrate the country. Thanks to this tropical augmentation, a book on South African dragonflies can also be useful in open areas elsewhere in Africa.

Although the book includes a checklist, glossary and brief introductions to ecology, morphology, habitats, conservation and observation of Odonata, 85% of the pages are devoted to identification. This is done with no less than three approaches: a ‘quick-key’, species texts and a species key. The quick-key is intended as a simple field-tool, using mainly colour characters to get on the right track. After several queries, a list of similar species is provided with two-line diagnoses and reference to the appropriate text. While this key intends to characterise the groups and relies strongly on their general appearance, it consists of fourteen pages of boxed small-print texts with just six line-drawings. Thus, while the concept is user-friendly, a more pictorial emphasis seems logical.

Next is a full page for every species chock-full of information. Each page features the vernacular and scientific names, a brief characterisation of the species, compact descriptions of appearance, habitat, distribution,
flight season and behaviour, a discussion of similar species, a dot-map of the South African range, two colour photographs (ideally one of each sex) and two line-drawings of appendages, secondary genitalia and/or wing venation. Three graphics show the Dragonfly Biotic Index (an environmental indicator scale developed by the author), flight season and size (with bars representing total and hind wing length) of every species. Understandably, such a concentration of information requires a strict and logical layout. This has been achieved, although the many headings and coloured boxes may be too lavish for some tastes. The information is accurate and succinct; some identification pointers are shown on the photos and drawings. This is useful, although it adds to the plethora of information.

Almost all photographs show the species in natural poses: a remarkable achievement considering the 320 (160 species x 2 sexes) images that ideally requires. In some cases dead, often discoloured and damaged, individuals have had to be portrayed, which have sometimes been ‘posed’ on a natural perch. This is not indicated and gives rather surreal results. Because of the stringent format, and in agreement with the book’s tendency to profusion, seventy extra photos have been inserted after the species texts, i.e. about one for every second species (references are provided in the species text). One error has sneaked in here: what should be Syncordulia legator actually shows Hemicordulia africana. The species key, finally, is based mainly on wing venation and male genitalia. This is illustrated with scanned wings that are elaborately annotated to explain the technical characters. Also most line-drawings are reused. These, of the author’s own hand, are generally excellent, although the hamule of the pictured Orthetrum sternmale is distorted, concealing the hook and thus not showing the relaxed condition in that species. This may induce misidentification of a nationally scarce species of this difficult genus.

This book is an obvious labour of love, of the author as well as his collaborators. Consequently, the book has a slightly overdone feel: so much information presented in so many and such compact ways. It is therefore a great pity that such passion has been so poorly produced: the paperback is not very field-resistant and the printing is dark and blurred. To include all other information, the photographs have been kept quite small. With good print quality this would have been fine, but now many images have lost the liveliness of the subject portrayed. Samways’ devotion deserved better. Hopefully the book will sell well with South Africa’s booming eco-tourism (nine million tourist arrivals in 2007!) and a more luxurious edition will follow soon!

References
Additional records for Oman

Bob Reimer [bob@reimer.biz]

Over the past seven years that I have been living in Al Ain, United Arab Emirates, I have developed a passion for dragonflies. When I arrived, what I enjoyed most out of doors was doing macro photography of plants. I joined the Al Ain Chapter of the Emirates Natural History Group and was soon doing tramps around the oases and wadis of the Buraimi District of Oman each weekend. Buraimi and Al Ain are twin cities and, when we arrived, there was a large area of Oman that could bevisited with no border formalities. Occasionally an insect of some kind would spoil my photograph of a flower, but the two resident entomologists in the group, Dr. Mike Gillett and Dr. Brigitte Howarth, would tell me what it was and something of its behaviour. After a while it became more interesting and challenging to photograph insects with the knowledge I was gleaning from my fellow members. Eventually, I settled on learning dragonflies and damselflies as a group that was relatively easy to observe and learn with a comparative wealth of information available. Vincent Kalkman’s visit to Al Ain in 2007 reported in Agrion 12.2 raised my interest to a new level.

Progress in UAE and Oman has brought a border fence and new border controls, but it has also brought a much improved highway to the south of Oman and the relatively poorly explored Dhofar region. It is now possible to make the 1200 km journey from Al Ain to Salalah, the main city in Dhofar, in a day rather than the 2 or 3 days that were necessary when we arrived. My wife, Barbara, and I took advantage to that twice in 2008, first during our University break in January (12-16 Jan 2008) and then at Eid at the end of September just after the end of the Khareef or monsoon season (29 Sep-2 Oct 2008).

During our first trip in January, we only recognized one species as new to us, Lindenia tetraphylla, which Abu Dhabi ENHG member Dick Hornby had photographed in the same location, Wadi Darbat, a year earlier. There was also a red dragonfly that was seen foraging along a beach at dusk near Al Mugsayl that I couldn’t identify. My wife had obtained some nice pictures of a male and female dragonfly I hadn’t spotted at a coastal inlet in the east between Hadbeen and Hasik. With the resources I had at the time, the closest I could come as a species identification was Pantala flavescens although they were perching horizontally not vertically. The publication of Agrion 12.2 with Michiel van der Weide and Vincent Kalkman’s records from Oman solved the problem as the photo of a Macrodiplax cora matched up with my wife’s photographs.

With the Agrion article in hand and the knowledge that the wet season in Dhofar would just be completed, we headed back to Salalah at the end of the holy month of Ramadan for the Eid holiday. We were able to have a good internet connection during this visit, so each night I sent a short report with pictures of species we hadn’t seen before to Vincent Kalkman and K-D Dijkstra who kindly sent back identifications. On our first day we visited Ayn Hamran and Khor Taqah. At Ayn Hamran we were able to see two species new to us and one old friend that had not been recorded in Dhofar before to the best of my knowledge. The Agrion pictures of Pseudagrion sublacteum made that damselfly easy to recognize. I also managed to net a heavy dragonfly that was foraging along the irrigation channel which K-D identified as Tramea limbata. A Paragomphus sinicaticus also showed up and was photographed (Photo 1). This may be the most southerly record of this species in Arabia. Later in the day we visited Khor Taqah. I saw a couple dragonflies I couldn’t get great pictures of but the pictures were good enough for K-D to identify as Rhyothemis semihyalina. The most interesting find was a small red damselfly in short grass in the marsh. Since I couldn’t see ovipositors on three of them, I assumed I had 3 males and 1 female. From the male and female pictures I sent, K-D sent this response: “Agriocnemis sp. both seem females to me. Schneider & Dumont (1997) report just one species from Oman: a single female A. pygmaea from al-Ansab lagoons, Muscat [Photo 2]. So your find is interesting. Try to find some males for the voucher. They’re equally small and will also be reddish when fresh, but turn dark and eventually pruinose.”
Our second day, we surveyed the section of Wadi Darbat reported in the *Agrion* article. Barbara quickly spotted *Nesiothemis farinosa*. While I was photographing a *N. farinosa* which we collected as a voucher, the smallest damselfly wheel I had ever seen appeared on a floating plastic bag. Unfortunately it blew away before I was able to switch lenses to photograph it. I suspect this was our *Agriocnemis* sp. Further down the lake, we also saw *Azyragriion nigridorsum* and collected a tandem pair as a voucher.

The third day, we drove to the end of the road to the east. At the time, we didn’t think we’d got anything new but did get good views of *Rhyothemis semihyalina* and what turned out to be *Macrodiplax cora* mating and ovipositing in tandem in flight. The following day we visited Khor Rawri at the mouth of Wadi Darbat and returned to Khor Taqah to look harder for the *Agriocnemis* sp. We found about 6 males and 10 females within 100 m of where I had found them the first time. I collected two males and a female as voucher specimens (Photos 3 and 4).

When we returned to Al Ain, another ENHG member, Dr. Gerald Buzzell, was able to help me use the Faculty of Medicine and Health Sciences’ research microscope to view one of the male *Agriocnemis* sp. Those pictures were duly forwarded to K-D and Vincent who responded that it did indeed look like *A. pygmaea*. Since Mike Gillett was visiting the UAE at that time, he set the voucher specimens from Dhofar for me and they have been added to the ENHG collection. The male *Agriocnemis* used for microscopic examination was sent to K-D for the Naturalis collection. Between my visit to Salalah and when K-D received the specimen, K-D had the opportunity to collect in Egypt and had obtained specimens of *Agriocnemis sania*. He wondered if perhaps the population in Dhofar might be *A. sania*. His opinion is that the specimen he received is *A. cf. pygmaea*. It agrees in many features with the assumed *sania* from Egypt and this implies that, once more, if populations between North Africa and tropical Asia are studied, the two might prove to be synonymous (pers. comm. K.-D.B. Dijkstra).

The beginning of December meant we had another break for UAE National Day and Eid al Fitr. We spent a few days at Sawadi Beach near Muscat and visited the Oman Natural History Museum in Muscat where I was allowed to view their Odonata collection. It was nice to be able to see almost all of the dragonflies and damselflies recorded in Oman represented in the drawers. As a result of seeing *Urothemis edwardsi* “in the flesh” with its locality information, I reviewed my photographs and believe I have some pictures of one from Dhofar that I had previously thought might be *Diplacodes lefebvrei* (Photo 6). While at Sawadi Beach, there were several dragonflies foraging around the swimming pool that appeared to be behaving the same way as the ones I saw in January in Dhofar. While I couldn’t take a picture, I did get a good look at one flying around my knees and believe it was *Macrodiplax*.
cora. If correct, this observation would bring the presence of that species much closer to the UAE.

Ischnura have been a problematic genus for UAE observers as for many years we only recognized *Ischnura evansi*. As a result of our discussions when we recognized *I. senegalensis* and the acquisition of more reference material, I have been paying particular attention to these damselflies especially when we realized that they could not be separated by location. I photographed several specimens that did not appear to fit in either species during March, 2009 (Photo 8). A planned trip to Frankfurt, Germany, created the opportunity to visit Dr. Wolfgang Schneider. Dr. Schneider very kindly spent many hours with us over three days, showing us specimens of Odonata that were present or expected in Arabia under the microscope, reviewing some of the literature for Arabia that wasn’t available in the UAE and reviewing our photographs to confirm my identifications. The aberrant *Ischnura* that I had photographed in Northern Oman keyed out as *Ischnura fountaineae*, which had not been previously recognized in Oman. A later, more detailed review of my photographs led to the discovery of earlier pictures of the species at other locations nearby in Northern Oman. Waterson and Pittaway (1991) have previously recorded *I. fountaineae* for Qatar.

I’d like to thank the Emirates Natural History Group and in particular Al Ain members Dr. Mike Gillett, Dr. Brigitte Howarth (the curator of the ENHG arthropod collection) and Dr. Gerald Buzzell, Dubai chairman, Gary Feulner and Abu Dhabi member, Dr. Dick Hornby for their help and encouragement in my study of dragonflies. Thanks to Siddiqa Ramadhan, director of the Oman Natural History Museum, and Azza Al Jabri, the keeper of the arthropod collection, for their permission to view the Oman Natural History Museum Odonata collection. K-D Dijkstra, Vincent Kalkman and Wolfgang Schneider have all been very generous with their time and sharing in-depth knowledge of Odonata for which I am very grateful.

References

Red-veined dropwings: how long do they live?
Warwick & Michèle Tarboton [wtarbotn@iafrica.com]

The Red-veined Dropwing *Trithemis arteriosa* is a common and characteristic African savanna dragonfly, and virtually any sedge-fringed pond in this region will have males of this species in attendance in the summer months. Until recently, we lived on a farm in this savanna environment, 200 km north of Johannesburg, in South Africa, and in 2001, after reading about how to go about it on the British Dragonfly Society web-site, we were inspired to build a 40 m² dragonfly pond in our garden. It was planted with a selection of locally-occurring sedges, and within days these iconic dragonflies moved in, quickly becoming, and remaining, the dominant odonate on the pond. In the 2005/06 summer we decided to mark and monitor this population, and over the eight-month period (Sept-April) we caught and numbered virtually every male that made an appearance on the pond. The number of territorial males varied monthly, peaking at about 20 individuals in February and, as a result of the steady replacement of older males by younger males, we marked 407 individuals in total, plus 25 females that came to the pond to oviposit.

When caught, each male’s left hind-wing was marked with a small 2- or 3-digit number, the numbers written in reverse so they appeared normal when viewed through the wing from above. The numbers were painted onto the wing using a tooth-pick dipped into quick-drying, red nail varnish (Revlon Swift-set #032), the red colour selected to match the male’s abdomen colour. After being held in this way for about a minute (for the varnish to dry) the marked dragonfly was released onto a branch next to the pond.

The perch sites used by the males (about 100) were all numbered, and we did daily, and often hourly, roll-calls of all the marked individuals in attendance, which perches they were using, and what they were doing. We had 7,766 re-sightings of marked males, recorded 122 copulations involving marked males, and we witnessed many, many territorial skirmishes. We also collected, throughout the eight months, hourly weather readings using an automatic, on-site weather station. Here we simply want to report on how long the territorial males occupied sites on the pond and what became of them.

Nearly half of the males caught (42% of 407) flew off and never returned to the pond. A few of these were subsequently sighted at other
ponds in the area but, because none of these other sites were systematically monitored, further history on these individuals’ movements was not obtained. Of the 227 males that returned to the pond for at least one day after being caught, 47% continued to take up daily positions on the pond for at least 10 days after being marked, 16% survived for at least 20 days, and 4% survived for at least 30 days. Five males survived for at least 40 days, and the longest-lived males on the pond survived for 47, 48 and 50 days respectively; all these individuals were present on the pond on a daily basis. Based on age when caught, these males would have had life-spans of 54, 52 and 55 days respectively. Six of the 25 marked females were resighted on the pond, these sightings being 3, 7, 11, 14, 24 and 29 days after they were marked.

The eventual fate of males was seldom witnessed. A couple were found dead or dying on the pond, but the great majority were present one day and gone the next. What we did witness was a progressive deterioration of their wings as the males got older, and some examples of this are shown in photos 1-3. No males reached 30-35 days of age without significant wing damage (photo 3) and males older than this, although still living, were to a greater or lesser extent incapacitated and effectively excluded from the desired parts of the pond by the aggressive behaviour of younger males. Our counts showed that copulation frequency in males diminished significantly with age, and that males older than 32 days did not achieve any copulations at all. So, from a reproductive perspective, how long their lives extended beyond this age was of no consequence.

What caused the wear and tear in their wings? We witnessed literally hundreds of territorial interactions which, in the Red-veined Dropwing, takes the form of an aerial skirmish in which the two (or less often three) competitors fly rapidly around each other in tight circles (“spinning”), the defender apparently seeking to drive the intruder/s upwards (photo 5). In some instances the pair of combatants disappeared high into the air out of view and, in a few cases, males continued this energetic activity for 20 minutes or more. We also observed the fact that males frequently came out of such skirmishes with damaged wings which, prior to the conflict, were intact (photo 4). During these skirmishes it looked as if the combatants lowered their legs while spinning - were they using their legs in this way, perhaps, to inflict wing damage on the opponent?

Our conclusion from watching this charming little dragonfly is that wing wear-and-tear progresses with age, and it is largely inflicted during territorial skirmishes. Also, as males get older and more wing-damaged, they become progressively more handicapped in such contests and, even if they survive, they are eventually side-lined from the mating arena by younger males. Almost certainly the added disadvantage of deteriorating wings is a diminishing ability to both avoid predators and hunt successfully.

Photo 4: Wings observed damaged following aerial conflict

Photo 5: Defender apparently seeking to drive intruder upwards
Rediscovery of *Austrocordulia leonardi* (Sydney Hawk) in the suburbia of Sydney

*G. Theischinger (GT), J. Miller (JM), R. Miller (RM), M. Krogh (MK)
*NSW Department of Environment and Climate Change, PO Box29, Lidcombe NSW
†Cumberland Flora & Fauna Interpretive Services, 13 Park Rd, Bulli NSW

Abstract. A report is given of the rediscovery in suburban Sydney of *Austrocordulia leonardi*, a species considered as one of Australia's rarest dragonflies. Ecological information accumulated during the recent search for the species is presented and discussed.

Introduction

Austrocordulia leonardi, better known as “Sydney Hawk” (Hawking & Theischinger 2002) was described from Woronora River near Heathcote, New South Wales (Theischinger 1973). The type habitat was a river dam used for some time in the 1960-1980s as a bathing site. Several years after its discovery the species, a medium-sized (wing span 60-70 mm, body length 50-55 mm), black and yellow dragonfly, at that time considered to belong in the family Corduliidae, was found along Kangaroo Creek near Audley in the Royal National Park (Theischinger 1973; Theischinger & Watson 1978) and in the Nepean River at Maldon Bridge near Wilton where it appeared to be quite common (Theischinger & Watson 1984). Because it represented a traffic-hazard (parked cars along the busy Heathcote-Liverpool Road), the Woronora River bathing site was eliminated in 1986 by taking down the man-made weir that had provided deep cool water beneficial for swimming - and apparently crucial for the existence there of *A. leonardi*. After that the species was no longer observed at its type locality, and not much later it apparently disappeared from the Nepean River site leaving the site near Audley as the only locality where the regular observation of fresh final instar larval exuviae along the steep high bedrock banks continued to prove its survival, even though adults were never observed. A record of *A. leonardi* from near Rockhampton (Theischinger 2001) probably resulted from mislabelled material.

After a few surveys aimed at the discovery of *A. leonardi* in other locations in the larger Sydney region failed, *A. leonardi* was considered to be one of Australia’s rarest dragonflies. In 2007, based on the extremely limited distribution, rarity, recent lack of detection and threats to its survival, it was listed as an Endangered Species in Part 1 of Schedule 4 of the NSW Fisheries Management Act 1994. It is also included in the category B1+2c (Critically Endangered) in the IUCN Red List of Threatened Species.

Only in recent years have a few scientific papers (e.g. Hawking & Theischinger 2004; Theischinger & Hawking 2006; Theischinger & Jacobs 2008) and popular articles (e.g. Bertola 2008) drawn attention to the seemingly disappearing *A. leonardi*. These articles, the listing of the species, and proposed developments that could impact the waterways of the region, made the present authors very determined to find if there were other sites where the species survived, and they set out to survey areas of potential *A. leonardi* habitat.

Methods and results

With the available habitat descriptions ["breite, sehr langsam fließende Flüsse und große, tiefe Tümpel in Küsten Nähe" (= wide, slow-flowing streams and large, deep pools near the coast) (Theischinger 1973) respectively “rivers, particularly dams” (Theischinger & Hawking 2006) and Gunther Theischinger’s thorough instruction on how to best find and distinguish final instar larval exuviae of *A. refracta* and *A. leonardi* and other dragonfly species (the most effective recording method, at least for the strongly sclerotized exuviae of *Austrocordulia* species) as a basis, JM, RM and MK - walking and swimming - explored territory much of which was familiar particularly to Rob Miller from extensive flora surveys in the region. Topographic maps were used to identify deep pools with suitable aspect, orientation and slope which would provide suitable habitat for the occurrence of *A. leonardi*. Surprisingly JM and RM were able to establish that *A. leonardi* tenuously survives in the Nepean River, and JM, RM, and GT finally succeeded in finding clear evidence of the species at three new sites along the Georges River near Campbelltown in Western Sydney.

In detail the results of the *A. leonardi* surveys are as follows (identification of material by GT, conducted in the lab):

Locality and dates and collectors:

B: Australia, New South Wales, O’Hare’s Creek, waterholes, 34.181956S/150.857627E, 25/12/2008, M. Krogh, J. & R. Miller.
Presence/absence of species and numbers of specimens collected at localities/sites A-J

<table>
<thead>
<tr>
<th>Localities/sites and exuviae numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
</tr>
<tr>
<td>Austrolestes cingulatus</td>
</tr>
<tr>
<td>Synlestes weyersii</td>
</tr>
<tr>
<td>Austroargiolestes</td>
</tr>
<tr>
<td>?icteromelas</td>
</tr>
<tr>
<td>Diphebia ?lestoides</td>
</tr>
<tr>
<td>Nososticta solida</td>
</tr>
<tr>
<td>Neosticta canescens</td>
</tr>
<tr>
<td>Rhadinosticta simplex</td>
</tr>
<tr>
<td>Austroagrin watsoni</td>
</tr>
<tr>
<td>Caliagrion billinghursti</td>
</tr>
<tr>
<td>Pseudagrion sp.</td>
</tr>
<tr>
<td>Ischnura sp.</td>
</tr>
<tr>
<td>Xanthagrion erythroneurum</td>
</tr>
<tr>
<td>Austroaeschna unicornis</td>
</tr>
<tr>
<td>Notoaeleschna sagittata</td>
</tr>
<tr>
<td>Adversaeschna brevistyla</td>
</tr>
<tr>
<td>Austrogomphus amphicitus</td>
</tr>
<tr>
<td>Austrog. ochraceus/guerini</td>
</tr>
<tr>
<td>Hemigomphus ?gouldii</td>
</tr>
<tr>
<td>Choristhemis flavoterminata</td>
</tr>
<tr>
<td>Synthemistidae sp.</td>
</tr>
<tr>
<td>Austrocordulia leonardi</td>
</tr>
<tr>
<td>Austrocordulia refracta</td>
</tr>
<tr>
<td>Cordulephya ?montana</td>
</tr>
<tr>
<td>Hemicordulia australiae</td>
</tr>
<tr>
<td>Hemicordulia superba</td>
</tr>
<tr>
<td>Hemicordulia tau</td>
</tr>
<tr>
<td>Diplacodes bipunctata</td>
</tr>
<tr>
<td>Diplacodes haematodes</td>
</tr>
<tr>
<td>Nannophlebia risi</td>
</tr>
<tr>
<td>Orthetrum caledonicum</td>
</tr>
<tr>
<td>Orthetrum vilosovittatum</td>
</tr>
<tr>
<td>Total number of species other than A. leonardi</td>
</tr>
<tr>
<td>Stream order</td>
</tr>
<tr>
<td>Altitude of locality (m asl)</td>
</tr>
</tbody>
</table>

* = known from previous collecting of GT
Discussion

The new findings of *A. leonardi* confirm some of its known/suspected ecological requirements and present at least initial and anecdotal observations on its synecology.

The detected species numbers did not differ significantly between sites where *A. leonardi* was found previously and in this study and similar localities where it was not detected. The only clearly detected difference appears to be altitudinal. Whereas the *A. leonardi* site at Audley is practically at sea level, the Woronora River site at Heathcote-Liverpool Rd is only a few m higher and Maldon Bridge bridges the Nepean River at about 80 m asl. The site at Waratah Rivulet is approximately 240 m asl and the sites at O’Hare’s Creek are between 150 and 240 m asl. Altitude, however, does certainly not strongly affect the closely related *A. refracta* which species is known from sea level up to 1100 m (Theischinger, unpublished). It may, however, in this context be of some significance that the black and yellow *A. leonardi* is a strictly diurnal dragonfly that seems to need open sunlit space, whereas the drab *A. refracta* is crepuscular and able to do just as well in overgrown and narrow situations. It also appears that *A. leonardi* can only survive in sites with permanent rather deep and cool water whereas *A. refracta* is also able to live at least in some temporal streams. The stream orders range from 4 to 7.

Figs 1-3. Final instar larval exuviae of: 1) Austrocordulia leonardi Theischinger, from Georges River (34.060936S / 150.879248E); 2) *A. refracta refracta* Tillyard, from Karuah River (32.27445S/151.90099E); 3) *A. refracta jurzitzai* Theischinger, from Georges River (34.060936S/150.879248E). (The transversely evenly arched abdomen of *A. leonardi* and the pitched abdomen of *A. refracta* make distinguishing of the two species clear and easy, even in the field.)

It is probably significant that *A. leonardi* has as yet not been found in sites where *A. refracta* was missing, and it may be worth mentioning that *A. leonardi* was hitherto only found to coexist with the southern subspecies of *A. refracta*, *A. r. jurzitzai* (Theischinger 1999). Only typical *A. refracta*, however, is known from Karuah River (ca 60 m asl) where a small larva, most probably of *A. leonardi*, was recently collected (Theischinger unpublished; Theischinger & Endersby in press).

It can be seen from the table that the only dragonfly species found in the new *A. leonardi* sites and not in similar sites where the species was not found are *Cahagion billinghursti* (Martin) and *Austrogomphus* (*Pleiogomphus*) *amphiclitus* (Selys). These two species are known to GT also from the original Woronora River site and the site along Kangaroo Creek. The observed negative associations between Austrolestes cingulatus and *Xanthagrion erythroneurum* with *A. leonardi* did not come as a surprise but are most probably due to small sample size.

Conclusion

The great news about the rediscovery of *A. leonardi* in suburban Sydney does not represent a reason for complacency or for easing up on its conservation status. The Georges River habitat pools are located close to an area of Sydney
that is experiencing renewed urban development. Some of the potential consequences of this development on the *A. leonardi* habitat are increased urban runoff and increased controlled burning for new houses that adjoin the bushland areas. The habitat pools are also at risk from the potential of altered hydrology and water quality that can result from longwall mining upstream from the sites.

While the discovery of a new location for *A. leonardi* is good news, it does not in any way diminish the need for vigilance in the conservation of the habitat for this species, which is still very rare and at risk of extinction.

References

Photo 1: *Austrocordulia leonardi* (male). Credit: L. Müller

Viridithemis viridula Fraser, 1960 – discovery of the first known male

M D Crewe (mike.sturnus@btinternet.com) and Callan Cohen (callan@birdingafrica.com)

Discovery
On the 8 November 2007, on a Limosa Holidays bird and wildlife visit to Madagascar led by CC of Birding Africa, we visited Zombitse Forest, part of the Zombitse-Vohibasia National Park. This relatively small remnant patch of deciduous dry forest has similar characteristics to the more extensive and better-studied forests of Kirindy, further to the north near Morondava. Zombitse is situated in the south-west of the island, approximately 130 km east of Toliara and 10 kilometres west of Sakaraha, and access details to the trail that we explored on the northern side of the main Ihosy-Toliara road (the RN7) are provided in Cohen et al. (2006). During our walk in the forest, MDC noticed a particularly colourful dragonfly perched close to ground level in the forest understorey on the edge of a small open area, which we were able to photograph. The GPS location was S 22.88339 E 44.69447 and the altitude was 800 metres above seal level. The timing of our visit was just at the start of the main rain season.

Identification
On returning home to the UK, MDC was unable to identify the specimen to species, having worked his way through all the likely species listed by Donnelly & Parr (2003) and researched them on the internet, so the photographs were left unlabelled. By coincidence, in January 2009, he received an email from Dr. Florian Weihrauch of Germany, requesting information on some odonata records he had reported for the Canary Islands; in the course of a number of emails that followed, he emailed Dr Weihrauch one of the pictures. The answer came back pretty quickly from Andreas Martens that the photos were of *Viridithemis viridula* Fraser, 1960, a species known only from a single museum specimen and from pictures of three further individuals, photographed in the field (K-D Dijkstra pers. comm.); all previous known individuals were female. K-D Dijkstra further confirmed the identity and the fact that it was a male.

Photo 1: Male *Viridithemis viridis*, Madagascar. Photo credit Callan Cohen
Descriptive remarks
Photographs of the Zombitse Forest individual show it to be a male by virtue of the genital appendages, while comparison of the wing venation (and general structure and shape) with a photograph by K. Karkow in Collen et al. (2008) confirms the Zombitse Forest individual as V. viridula and this therefore represents the first discovery of a male of this species. In comparison with the female, the male shows the same blue and purple eyes and bright, apple-green head, thorax and proximal part of the abdomen, while the lower abdomen is flushed with orange, becoming a brighter and richer red towards the distal end. The pterostigmata on both fore and hind wings have a yellowish-green colour, again like those of the known females. The femora and tibiae are a dull orange, becoming black on the tarsus.

It has previously been suggested that the failure of researchers to find a male V. viridula may well be due to the males being difficult to pick out amongst males of other, similarly-coloured species (K-D Dijkstra pers comm.). All-green libellulids are certainly unusual and, in the one genus where this colour is frequent (the New World Erythemis species), a proportion of mature males attain a bluish pruinescence; if males of V. viridula did this, they would be difficult to spot amongst pruinose blue males of several other Madagascan species. This has certainly proven not to be the case, with the extensive bright red colouration of the abdomen on the Zombitse individual going against this idea – though it is, of course, not yet known to what extent this may vary.

References

Photo 2: Male Viridithemis viridis, Madagascar. Photo credit Callan Cohen
Additional records of *Lyriothemis defonsekai* van der Poorten 2009 in Sri Lanka

Nancy van der Poorten [nmgvdp@netscape.net]

Lyriothemis defonsekai was first identified in 2007: one female was seen on 18 June and one male and one female were seen on 3 July near Kudawe, Sri Lanka (van der Poorten, 2009). Additional sightings have since been confirmed, with photographic evidence, from a small section of the Sinharaja Forest Reserve near the type locality.

L. defonsekai is easily distinguished from all other dragonflies in Sri Lanka (Fig. 1-2). These additional recordings have all been made along the edge of a walking trail near the Kudawe entry point that is bordered by a perennial stream (500 m asl). The vegetation here consists mainly of dipterocarps with tree ferns, bamboo and pitcher plants. Females were seen perched on vegetation at a height of 1 to 5 m above ground. Males were seen perched 3 to 7 m above ground, usually on a bare twig. No behaviour other than perching and no interactions between males and females have been reported.

The Sinharaja Forest Reserve is located in the south-west of the island and is a National Heritage and Wilderness Area administered by the Forest Department. UNESCO designated it as a Man and Biosphere Reserve in 1978 and a World Heritage Site in 1988. It is hilly terrain, about 8,800 hectares in extent, ranging from 300 to 1200 m asl. It receives 3500-5500 mm of rainfall annually with no pronounced dry spell. Sri Lanka and the Western Ghats in India are one of 25 global biodiversity hot spots (Myers et al., 2000). The hill forests in south-western Sri Lanka, of which the Sinharaja Forest Reserve is a part, are the only aseasonal, ever-wet region in South Asia, between Malesia and Madagascar (Ashton & Gunatilleke, 1987). The Sinharaja Forest Reserve in particular has a high endemicity of plants, birds, reptiles, amphibians and insects. About seventy species of dragonflies have been recorded from this forest (Bedjanic et al., 2009) including the following endemics—*Hylaeothemis fruhstorferi*, *Tetrathemis yerburii*, *Elattoneura oculata*, *E. caesia*, *E. centralis*, *Heliogomphus walli*, *Gomphidia pearsoni*, *Microgomphus wijaya*, *Macrogomphus lankanensis*, and several species of *Platysticta* and *Drepanosticta*. In addition, several other species found in this forest are in the process of description (N. van der Poorten, in press; M. Bedjanic, pers. comm.).

Since the trail from the Kudawe entry point through the Sinharaja Forest Reserve is well traveled, it is likely that more records of *L. defonsekai* will be made. The park is a protected area but the stream along which the records of *L. defonsekai* have been made is a sensitive, and now important, habitat and needs to be protected from any changes. Since the rest of the Sinharaja Forest Reserve is not as accessible and is rarely visited, it remains to be seen whether or not *L. defonsekai* is found in other locations.

1. At the Kudawe entry point, 100 m from the entrance gate:

<table>
<thead>
<tr>
<th>Date & time</th>
<th>Number & Sex</th>
<th>Observer(s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 12, 2009, 9:30 am</td>
<td>1 ♂, 1 ♀</td>
<td>K. Conniff</td>
<td>Pers. comm.</td>
</tr>
</tbody>
</table>

2. At the Kudawe entry point, 400 m from the entrance gate, near the start of the Moulawella Nature Trail:

<table>
<thead>
<tr>
<th>Date & time</th>
<th>Number & Sex</th>
<th>Observer(s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 September 2007, 12:30 pm</td>
<td>3 fresh ♀, 2 fresh ♂</td>
<td>K. Conniff and G. van der Poorten</td>
<td>Pers. comm.</td>
</tr>
<tr>
<td>9 September 2007, 10 am</td>
<td>1 ♂</td>
<td>K. Conniff and G. van der Poorten</td>
<td>Pers. comm.</td>
</tr>
<tr>
<td>17 April 2008, 10:47 am</td>
<td>1 ♂</td>
<td>N. and G. van der Poorten</td>
<td>Pers. comm.</td>
</tr>
<tr>
<td>4 May 2008, 8:30 am</td>
<td>1 ♂, 1 ♀</td>
<td>N. and G. van der Poorten</td>
<td>Pers. comm.</td>
</tr>
<tr>
<td>6 Aug 2008</td>
<td>1 ♀</td>
<td>A. Salgado</td>
<td>Database for Bedjanić et al., 2009</td>
</tr>
</tbody>
</table>

3. At the Kudawe entry point, 2 km from the entrance gate, near the Research Station:

<table>
<thead>
<tr>
<th>Date & time</th>
<th>Number & Sex</th>
<th>Observer(s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 July 2006</td>
<td>1 ♂</td>
<td>A. Salgado</td>
<td>Database for Bedjanić et al., 2009</td>
</tr>
<tr>
<td>2 May 2007</td>
<td>1 ♀</td>
<td>S. Gunasinghe</td>
<td>Pers. comm.</td>
</tr>
<tr>
<td>14 Aug 2007</td>
<td>1 ♂, 1 ♀</td>
<td>A. Salgado</td>
<td>Database for Bedjanić et al., 2009</td>
</tr>
</tbody>
</table>
References

Acknowledgements

Karen Conniff for records and a critical review of the manuscript. Sampath Gunasinghe, Amila Salgado, and Gehan de Silva Wijeyeratne for records. Matjaž Bedjanic for comments on the manuscript. George van der Poorten for records and photographs.

Lyriothemis defonsekai male. Credit: George van der Poorten

Lyriothemis defonsekai female. Credit: George van der Poorten
Databasing dragonflies:
State of knowledge in the Neotropical region

Natalia von Ellenrieder [natalia.ellenrieder@gmail.com]

Taxonomy
The Neotropical region extends from the lowlands of Mexico to central Argentina. The fauna from the highlands of N Mexico belongs to the Nearctic region, and that of temperate forests of SW Argentina and Chile to the Austral region (Morrone 2001). However, in order to simplify the analysis and to allow for comparison with previous studies (Paulson 2004; Kalkman et al. 2008), the entire area extending from all of Mexico to S South America will be here referred to as Neotropical region.

Thus defined, the Neotropical region is currently the richest in described species of Odonata (1,727), closely followed by the Oriental region (1,703 species), housing almost a third of the world total number of described species (Fig. 1). However, knowledge of the order in this region is still poor and lags behind other regions of the World. New species continue to be found and many are awaiting description in collections; systematics within some families, especially within Zygoptera, has not been properly settled yet, and larvae of two thirds of the described species and of a fourth of the genera are still unknown. The main causes for this are twofold: 1) a regional shortage of trained taxonomic specialists relative to the high diversity of the area, and until recently, 2) lack of a comprehensive literature base covering the entire region. No treatises exist to allow for the identification of all the odonates of this amazingly biodiverse region. This has severely hampered studies in many countries as the literature necessary to identify all known species is scattered and not easy to gather.

This is currently changing, as several identification guides have recently been published for the Neotropical region: keys to species for Central America (Förster 2001), generic keys for adults of Brazilian Zygoptera (Lencioni 2005, 2006), generic keys for larvae of Brazilian Odonata (Costa et al. 2004), generic keys for the New World Anisoptera (Garrison et al. 2006), and generic keys for South American Odonata (von Ellenrieder & Garrison 2009). Two volumes authored by Heckman (2006, 2008) treat all species of Odonata described from South America; although the keys they include will not allow for reliable identifications, the compilation of references to specialized papers dealing with each taxon can be useful.

During the last five years (2004-2009) 93 new species (Table 1) and 11 new genera, and the larval stage of 90 species (Table 2) have been described from this region, doubling the number of new species described in previous periods.
Researchers and Collections

The early stages of Odonatology in this region were the result of the work of several European entomologists; among them Burmeister (1839), Rambur (1842), Selys-Longchamps (including more than 30 contributions from 1853 through 1889, with synopses for families of Zygoptera, and Aeshnidae, Cordulidae, and Gomphidae), Brauer (1865), Mc Lachlan (1878, 1881, 1897), Martin (1907, 1908, 1909a, b, 1911, 1914, 1921, including synopses for Aeshnidae and Cordulidae, and lists for Argentina and Chile), Karsch (1890, 1891a, b, c, d), and Hagen (1860; 1861; 1868), all of which included numerous descriptions of new species. Navás published numerous listings and descriptions between 1911 and 1936, but his descriptions were extremely brief and include numerous synonymies, with the additional problem of most of his types being lost. A similar situation is encountered with Förster’s contributions (1903, 1905, 1906, 1907, 1909, 1914). Kirby’s illustrated revision of the subfamily Libellulinae (1889) and synonymic catalogue of the Odonata of the world (1890) are still used by students of the order, as is Ris’ revision of the Libellulinae (1909-1919), which is still the most comprehensive reference available for some Neotropical genera. Ris (1904, 1908, 1913, 1918) also published listings and descriptions for Argentina and the Andean region. Fraser published monographs on the Austropetaliidae and Petaluridae (Fraser 1933), and described several new species from Peru (Fraser 1946) and Argentina (Fraser 1947, 1948).

Starting in the first half of the Twentieth century several entomologists from North America contributed to the study of the region. Calvert, whose most valuable contribution among his more than 250 publications dealing with Neotropical Odonata was a treatise of all odonate species from Central America (1901-1908, the Biología Centrali Americana), Borror, who provided important revisions and a key to Libellulinae genera (1931, 1942, 1945), and Gloyd, Kennedy, Montgomery, and Williamson among others with many important contributions.

Only during the second half of the Twentieth century did resident entomologists begin to study odonates in the Neotropical region, with Santos in Brazil, Rácenis in Venezuela, and Geijskes and Belle in Suriname. During the last thirty years research teams developed and are now active in Mexico (under the direction of Enrique González-Soriano, Rodolfo Novelo-Gutiérrez, Alejandro Córdoba-Aguilar), Costa Rica (Carlos Esquivel), Venezuela (Jürg De Marmels), Brazil (Angelo Machado, Janira Costa, Frederico Lencioni, Alcimar Carvalho), and Argentina (Javier Muzón, Natalia von Ellenrieder, Pablo Pessacq, Federico Lozano). Several visiting researchers from the USA and Europe (Jerrell Daigle, Nick Donnelly, Sid Dunkle, Bill Mauffray, Mike May, Dennis Paulson, Rosser Garrison, Ken Tennesen and Steve Valley among others) have conducted research in several countries and greatly contributed to the advancement of the knowledge of Odonata in this region.

Several collections house Neotropical Odonata, both in Europe (collected mainly around 1800-1900, and including many types) and in the New World.

European Collections:

BMNH: British Museum of Natural History, Dept. of Entomology, British Museum (Natural History), Cromwell Road, London SW7 5BD, ENGLAND, UK. Large collection, mostly pinned and of old material, but containing type material described by Calvert (1901-1908) in the Biología Centrali Americana, and by other authorities. Type catalogs: Kimmins, 1966; 1969a; 1969b; 1970. No electronic database including locality data available. FNS: Forschungsinstitut und Naturmuseum Senckenberg, Senckenberganlage 25, D-60325, Frankfurt-am-Main, GERMANY. Contains the papered collection of Friedrich Ris who worked on Odonata from the Andes (Ris, 1918). No electronic database including locality data available. IRSN: Institut Royal des Sciences Naturelles de Belgique, 29, rue Vautier, B-1000 Bruxelles, BELGIUM. Very old collection containing the Odonata of Baron Edmund de Selys-Longchamps, considered the “Father of Odonatology” who described approximately one-fifth of the world’s Odonata. Almost all of the collection is pinned and is rich in type material although no listing has ever been made. No electronic database including locality data available. RNHL: Rijksmuseum van Natuurlijke Historie, Department of Entomology, Rijksmuseum van Natuurlijke Historie, Raamsteeg 2, Postbus 9517, NL 2300 RA Leiden, THE NETHERLANDS. Contains the collections of Jean Belle and Dirk Geijskes who collected for many years in Surinam. The collection is especially rich in neotropical Gomphidae. Type catalog: Lieftinck, 1971. Electronic database including locality data currently under construction (Wasscher & van t’ Bosch, 2009).
New World Collections:
FSCA: Florida State Collection of Arthropods, 1911 SW 34th Street, Gainesville, FL 32608-1268, USA. One of the largest holdings of New World Odonata in the United States, containing over 330,000 specimens (including 130,000 immatures in vials) collected over the last sixty years. Collection includes over 150 primary types, listed on line at: <http://www.iodonata.net/>. A list of all species is also provided on-line. No electronic database including locality data available.
MCZ: Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA. Very rich, old, pinned collection containing type material of Herman Burmeister, Toussaint de Charpentier, Herman Hagen, and others. Listing of over 550 types (some with images) on line at: <http://insects.oeb.harvard.edu/mcz/>. No electronic database including locality data available.
Figure 3. Number of databased species from the Neotropical region that occur in n number of localities in ranges of 10.

RWG (registered with USNM): Plant Pest Diagnostics, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832-1448, USA. Well-curated collection, especially rich in New World material with emphasis on neotropical fauna. Electronic database including locality data available; georeferenced.

TWD (registered with FSCA): 2091 Partridge Lane, Binghamton NY 13903, USA. Well-curated, world-wide collection containing numerous New World specimens collected over the last 50 years. No electronic database including locality data available.

UMMZ: University of Michigan, Museum of Zoology, 1109 Geddes Avenue, Ann Arbor, MI, 48109-1079, USA. One of the largest holdings of Odonata in the world, containing the collections of F. Förster, C.H. Kennedy, E.B. Williamson, and others. Particularly rich in neotropical material though vast amounts of this material await study. Type catalog: Garrison et al., 2003. No electronic database including locality data available.

UNAM: Instituto de Biología, Departamento de Zoología, Apartado Postal 70-153, MX-04510, D. F. Large, well-curated, papered collection of Odonata from Mexico put together mostly by E. González-Soriano. No electronic database including locality data available.

ABMM, Angelo B.M. Machado personal collection, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Caixa Postal 486, BR-31270-901, Belo Horizonte - Minas Gerais, BRAZIL. Private collection including types of Brazilian material. No electronic database including locality data available.

IEUIM: Instituto de Entomología “Prof. José Herrera G.”, Universidad Metropolitana de Ciencias de la Educación, Casilla 147, Santiago, CHILE. Collection including numerous unidentified odonates, including some collected in N Chile. No electronic database including locality data available.

MIZA: Museo del Instituto de Zoología Agrícola “Francisco Fernández Yépez”, Maracay, VENEZUELA. Particularly rich collection of papered Venezuelan Odonata including collected material by the late J. Rácenis and by Jürg De Marmels. No electronic database including locality data available.

MLP: Museo de Ciencias Naturales de La Plata, Departamento de Entomología, Paseo del Bosque s/n, 1900 La Plata, ARGENTINA. Rich collection including types of Argentine species. Type catalog: Muzón et al., 2007. Electronic database including locality data currently under construction.
Figure 4. Recorded number of genera from the Neotropical region compared to their representation in database.

Figure 5. Recorded number of species from the Neotropical region compared to their representation in database.
Table 1. Species of Odonata described from the Neotropical region between 2004 and 2009.

<table>
<thead>
<tr>
<th>Family/Species</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polythoridae (1)</td>
<td></td>
</tr>
<tr>
<td>Chalcopteryx machadoi</td>
<td>Costa, 2005</td>
</tr>
<tr>
<td>Calopterygidae (7)</td>
<td></td>
</tr>
<tr>
<td>Mnesarete drepane</td>
<td>Garrison, 2006</td>
</tr>
<tr>
<td>Mnesarete ephippium</td>
<td>Garrison, 2006</td>
</tr>
<tr>
<td>Mnesarete lencionii</td>
<td>Garrison, 2006</td>
</tr>
<tr>
<td>Mnesarete loutoni</td>
<td>Garrison, 2006</td>
</tr>
<tr>
<td>Mnesarete machadoi</td>
<td>Garrison, 2006</td>
</tr>
<tr>
<td>Mnesarete rhopaloi</td>
<td>Garrison, 2006</td>
</tr>
<tr>
<td>Mnesarete williamsoni</td>
<td>Garrison, 2006</td>
</tr>
<tr>
<td>Lestidae (1)</td>
<td></td>
</tr>
<tr>
<td>Lestes fernandoi</td>
<td>Costa et al., 2006</td>
</tr>
<tr>
<td>Megapodagrionidae (7)</td>
<td></td>
</tr>
<tr>
<td>Heteragrion archon</td>
<td>De Marmels, 2006</td>
</tr>
<tr>
<td>Heteragrion bickorum</td>
<td>Daigle, 2005</td>
</tr>
<tr>
<td>Heteragrion gracile</td>
<td>Machado, 2006</td>
</tr>
<tr>
<td>Heteragrion luizfelipei</td>
<td>Machado, 2006</td>
</tr>
<tr>
<td>Heteragrion mantiqueirae</td>
<td>Machado, 2006</td>
</tr>
<tr>
<td>Heteragrion makintare</td>
<td>De Marmels, 2006</td>
</tr>
<tr>
<td>Heteragrion tradentense</td>
<td>Machado & Bedê, 2006</td>
</tr>
<tr>
<td>Protoneuridae (20)</td>
<td></td>
</tr>
<tr>
<td>Drepanoneura donnellyi</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Drepanoneura flinti</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Drepanoneura janiae</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Drepanoneura loutoni</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Drepanoneura muzoni</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Drepanoneura tennesenii</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Epiporeuena demarmelisi</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Epiporeuena janiae</td>
<td>Machado, 2005</td>
</tr>
<tr>
<td>Epiporeuena machadoi</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Forcepsioneura grossorum</td>
<td>Machado, 2005</td>
</tr>
<tr>
<td>Forcepsioneura juraensis</td>
<td>Machado, 2004</td>
</tr>
<tr>
<td>Idioneura celioid</td>
<td>Lencioni, 2009</td>
</tr>
<tr>
<td>Idioneura anaclara</td>
<td>Machado, 2005</td>
</tr>
<tr>
<td>Idioneura angelensis</td>
<td>Juillart, 2007</td>
</tr>
<tr>
<td>Neoneura kiutalei</td>
<td>Machado, 2007</td>
</tr>
<tr>
<td>Neoneura leonardoi</td>
<td>Machado, 2005</td>
</tr>
<tr>
<td>Peristicta jainsae</td>
<td>Pessacq & Costa, 2007</td>
</tr>
<tr>
<td>Peristicta jancceae</td>
<td>Pessacq & Costa, 2007</td>
</tr>
<tr>
<td>Peristicta muzoni</td>
<td>Pessacq & Costa, 2007</td>
</tr>
<tr>
<td>Protooneura romanae</td>
<td>Meurgéy, 2006</td>
</tr>
<tr>
<td>Coenagrionidae (36)</td>
<td></td>
</tr>
<tr>
<td>Acanthagrion aespiul</td>
<td>Tennen, 2004</td>
</tr>
<tr>
<td>Acanthagrion harlei</td>
<td>Muzón & Lozano, 2005</td>
</tr>
<tr>
<td>Aceratobasis nathaliae</td>
<td>Lencioni, 2008</td>
</tr>
<tr>
<td>Andinagrion gardneri</td>
<td>von Ellenrieder & Muzón, 2006</td>
</tr>
<tr>
<td>Angelagron frederici</td>
<td>Lencioni, 2008</td>
</tr>
<tr>
<td>Angelagron nathaliae</td>
<td>Lencioni, 2008</td>
</tr>
<tr>
<td>Argia yungensis</td>
<td>Garrison & von Ellenrieder, 2007</td>
</tr>
<tr>
<td>Bromeliagrion rehni</td>
<td>Garrison, 2005 in De Marmels & Garrison, 2005</td>
</tr>
<tr>
<td>Denticulobasis anken</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Denticulobasis dunklei</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Denticulobasis garrisoni</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Homeoura obrini</td>
<td>von Ellenrieder, 2008</td>
</tr>
<tr>
<td>Leptagrion alfonsoi</td>
<td>Machado, 2007</td>
</tr>
<tr>
<td>Mesophagrion dunklei</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Mesophagrion ecaudorialis</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Mesoleptobasis elongata</td>
<td>Garrison & von Ellenrieder, 2009</td>
</tr>
<tr>
<td>Metaeleptobasis liliarumae</td>
<td>Daigle, 2004</td>
</tr>
<tr>
<td>Phoenicagrion paulsoni</td>
<td>von Ellenrieder, 2008</td>
</tr>
<tr>
<td>Schistolobos boliviensis</td>
<td>Daigle, 2007</td>
</tr>
<tr>
<td>Telebasis curvithorax</td>
<td>Garrison, 2009</td>
</tr>
<tr>
<td>Telebasis corbetti</td>
<td>Garrison, 2009</td>
</tr>
<tr>
<td>Telebasis farcimentum</td>
<td>Garrison, 2009</td>
</tr>
<tr>
<td>Telebasis leptocyclus</td>
<td>Garrison, 2009</td>
</tr>
<tr>
<td>Telebasis levis</td>
<td>Garrison, 2009</td>
</tr>
<tr>
<td>Telebasis williamsoni</td>
<td>Garrison, 2009</td>
</tr>
<tr>
<td>Tepuibusca garciana</td>
<td>De Marmels, 2007</td>
</tr>
<tr>
<td>Tepuibusca nigra</td>
<td>De Marmels, 2007</td>
</tr>
<tr>
<td>Tepuibusca rubicunda</td>
<td>De Marmels, 2007</td>
</tr>
<tr>
<td>Tepuibusca thea</td>
<td>De Marmels, 2007</td>
</tr>
<tr>
<td>Tuberculobasis arara</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Tuberculobasis gejiskesi</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Tuberculobasis guarani</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Tuberculobasis kantiana</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Tuberculobasis macaxi</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Tuberculobasis tiro</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Tuberculobasis williamsoni</td>
<td>Machado, 2009</td>
</tr>
<tr>
<td>Aeshnidae (3)</td>
<td></td>
</tr>
<tr>
<td>Gynacantha bartae</td>
<td>Paulson & von Ellenrieder, 2005</td>
</tr>
<tr>
<td>Rhionaescina italiae</td>
<td>(Carvalho & Salgado, 2004)</td>
</tr>
<tr>
<td>Rhionaescina serrana</td>
<td>(Carvalho & Salgado, 2004)</td>
</tr>
<tr>
<td>Gomphidae (3)</td>
<td></td>
</tr>
<tr>
<td>Peruiogomphus beltei</td>
<td>Machado, 2005</td>
</tr>
<tr>
<td>Progomphus lamberti</td>
<td>Novelo, 2007</td>
</tr>
<tr>
<td>Progomphus marcelae</td>
<td>Novelo, 2007</td>
</tr>
<tr>
<td>Corduliidae (7)</td>
<td></td>
</tr>
<tr>
<td>Lauromacromia bedei</td>
<td>Machado, 2005</td>
</tr>
<tr>
<td>Lauromacromia pictinguaba</td>
<td>Carvalho et al., 2004</td>
</tr>
<tr>
<td>Neocordulia caucutica</td>
<td>De Marmels, 2008</td>
</tr>
<tr>
<td>Neocordulia foorentini</td>
<td>Costa & Machado, 2007</td>
</tr>
<tr>
<td>Neocordulia gaucho</td>
<td>Costa & Machado, 2007</td>
</tr>
<tr>
<td>Neocordulia matutuensia</td>
<td>Machado, 2005</td>
</tr>
<tr>
<td>Neocordulia santacularinensis</td>
<td>Costa et al., 2008</td>
</tr>
<tr>
<td>Libellulidae (8)</td>
<td></td>
</tr>
<tr>
<td>Elasmotheremis allatia</td>
<td>González-Soriano & Novelo-Gutiérrez, 2006</td>
</tr>
<tr>
<td>Elasmotheremis rufla</td>
<td>De Marmels, 2008</td>
</tr>
<tr>
<td>Garrisonia aurinata</td>
<td>Penvala & Costa, 2007</td>
</tr>
<tr>
<td>Macrothemis meurgéyi</td>
<td>Daigle, 2007</td>
</tr>
<tr>
<td>Macrothemis taurepan</td>
<td>De Marmels, 2008</td>
</tr>
<tr>
<td>Oligocladia garrisoni</td>
<td>De Marmels, 2008</td>
</tr>
<tr>
<td>Oligocladia rubribasalis</td>
<td>von Ellenrieder & Garrison, 2008</td>
</tr>
<tr>
<td>Perithemis capixaba</td>
<td>Costa et al., 2006</td>
</tr>
</tbody>
</table>

63
Table 2. Larvae of Odonata described from the Neotropical region between 2004 and 2009.

<table>
<thead>
<tr>
<th>Family/Species</th>
<th>Larva described by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polythoridae (2)</td>
<td></td>
</tr>
<tr>
<td>Euthore fasciata (Hagen in Selys, 1853)</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Polythore spesteri Burmeister & Börzsöny, 2003</td>
<td></td>
</tr>
<tr>
<td>Calopterygidae (5)</td>
<td></td>
</tr>
<tr>
<td>Hetaerina medina Ráčens, 1968</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Hetaerina menderi Juritz, 1982</td>
<td>von Ellenrieder 2007c</td>
</tr>
<tr>
<td>Hetaerina rosea Selys, 1855</td>
<td>Pessacq & Muzón 2004, von Ellenrieder 2007c</td>
</tr>
<tr>
<td>Mnesarete graea (Ris, 1918)</td>
<td>Garrison 2006</td>
</tr>
<tr>
<td>Omnomphelia imperatriz (McLachlan, 1878)</td>
<td></td>
</tr>
<tr>
<td>Leisideae (3)</td>
<td></td>
</tr>
<tr>
<td>Archileses tuberaltus (Williamson, 1921)</td>
<td>De Marmels 2001</td>
</tr>
<tr>
<td>Lestes apollinaris Navás, 1934</td>
<td>De Marmels 2004</td>
</tr>
<tr>
<td>Lestes dichrostigma Calvert, 1909</td>
<td>Muzón & Weigel Muñoz 2007</td>
</tr>
<tr>
<td>Megapodagrionidae (11)</td>
<td></td>
</tr>
<tr>
<td>Heteragrion barbil De Marmels, 1989</td>
<td>De Marmels 2004</td>
</tr>
<tr>
<td>Heteragrion breviro De Marmels, 1989</td>
<td>De Marmels 2004</td>
</tr>
<tr>
<td>Heteragrion chlorotaeniatum De Marmels, 1869</td>
<td></td>
</tr>
<tr>
<td>Heteragrion miniaturn Williamson, 1918</td>
<td>De Marmels 2004</td>
</tr>
<tr>
<td>Parapetnioba zeo Selys in Hagen, 1861</td>
<td>Novelo-Gutiérrez 2008a</td>
</tr>
<tr>
<td>Sciortops cyclanthorum Ráčens, 1959</td>
<td>De Marmels 2004</td>
</tr>
<tr>
<td>Teinopodagrion caquetunaru De Marmels, 2001</td>
<td>Pérez-Gutiérrez 2007</td>
</tr>
<tr>
<td>Teinopodagrion decipiens De Marmels, 2001</td>
<td>von Ellenrieder 2006</td>
</tr>
<tr>
<td>Teinopodagrion mendicion De Marmels, 2001</td>
<td>von Ellenrieder 2006</td>
</tr>
<tr>
<td>Teinopodagrion vallenatum De Marmels, 2001</td>
<td>Pérez-Gutiérrez 2007</td>
</tr>
<tr>
<td>Pseudodimagrionidae (4)</td>
<td></td>
</tr>
<tr>
<td>Mecistogaster astica Selys, 1860</td>
<td>Lencioni 2006</td>
</tr>
<tr>
<td>Mecistogaster linears (Fabricius, 1776)</td>
<td>Saltén & Hedström 2005</td>
</tr>
<tr>
<td>Microstigma maculatum Hagen in Selys, 1860</td>
<td>Neiss et al. 2008</td>
</tr>
<tr>
<td>Microstigma rotundatum Selys, 1860</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Platystictidae (1)</td>
<td></td>
</tr>
<tr>
<td>Palamegna dementia Selys, 1866</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Procteoneuridae (4)</td>
<td></td>
</tr>
<tr>
<td>Epipleoneura metallaica Ráčens, 1955</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Neaneura fulvicolles Selys, 1886</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Penisticta forcipata Hagen in Selys, 1860</td>
<td>Pessacq 2007</td>
</tr>
<tr>
<td>Prolechna alba Donnelly, 1961</td>
<td>Meurgéy 2008b</td>
</tr>
<tr>
<td>Coenagrionidae (27)</td>
<td></td>
</tr>
<tr>
<td>Acanthagrion aequilam Tennessen, 2004</td>
<td>Lozano et al. 2007</td>
</tr>
<tr>
<td>Acanthagrion vidua Selys, 1876</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Argia adamsi Calvert, 1902</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Argia barretti Calvert, 1902</td>
<td>Novelo-Gutiérrez 2008b</td>
</tr>
<tr>
<td>Argia croceipennis Selys, 1865</td>
<td>Costa et al. 2008b</td>
</tr>
<tr>
<td>Argia jorgensei Ris, 1913</td>
<td>von Ellenrieder 2007a</td>
</tr>
<tr>
<td>Argia sordida Hagen in Selys, 1865</td>
<td>Costa et al. 2008b</td>
</tr>
<tr>
<td>Argia transiata Hagen in Selys, 1865</td>
<td>von Ellenrieder 2007a</td>
</tr>
<tr>
<td>Bremetegnign rehni Garrison, 2005</td>
<td>Teireiras et al. 2008</td>
</tr>
<tr>
<td>Enallagma novahispainiae Calvert, 1907</td>
<td>Novelo-Gutiérrez 2005b</td>
</tr>
<tr>
<td>Ischnura ultima Ris, 1908</td>
<td>Muzón & Pessacq 2005</td>
</tr>
<tr>
<td>Leptagrion andromache Hagen in Selys, 1876</td>
<td>Muzón et al. 2009</td>
</tr>
<tr>
<td>Leptagrion bocainense Santos, 1979</td>
<td>Costa et al. 2009</td>
</tr>
<tr>
<td>Leptagrion capixabae Santos, 1965</td>
<td>Costa et al. 2009</td>
</tr>
<tr>
<td>Leptagrion elongatum Selys, 1876</td>
<td>Costa et al. 2009</td>
</tr>
<tr>
<td>Leptagrion mucronum (Bürmeister, 1839)</td>
<td>Costa et al. 2009</td>
</tr>
<tr>
<td>Leptagrion pertongum Calvert, 1909</td>
<td>Costa et al. 2009</td>
</tr>
<tr>
<td>Mesamphigrion laterale (Selys, 1876)</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Mesamphigrion tamaense (De Marmels, 1988)</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Oriealaggina quadricolor (Ris, 1918)</td>
<td>von Ellenrieder & Garrison 2008a</td>
</tr>
<tr>
<td>Oxyagriion ablutum (Calvert, 1909)</td>
<td>Pessacq et al. 2005</td>
</tr>
<tr>
<td>Oxyagriion bruchi Navás, 1924</td>
<td>von Ellenrieder & Garrison 2006</td>
</tr>
<tr>
<td>Oxyagriion iberiensis (De Marmels, 1989)</td>
<td>De Marmels 2007a</td>
</tr>
<tr>
<td>Telebasis digicephala Calvert, 1902</td>
<td>Novelo-Gutiérrez & Gómez-Anaya 2005</td>
</tr>
<tr>
<td>Aeshnidae (3)</td>
<td></td>
</tr>
<tr>
<td>Aeshna williamsoniana Calvert, 1905</td>
<td>Novelo-Gutiérrez 2007</td>
</tr>
<tr>
<td>Castoraeschna colorata (Martin, 1908)</td>
<td>Carvalho et al. 2006</td>
</tr>
<tr>
<td>Castoraeschna longifoliae (Kimmitt, 1929)</td>
<td>Carvalho et al. 2008</td>
</tr>
<tr>
<td>Gomphidae (7)</td>
<td></td>
</tr>
<tr>
<td>Epetogomphus bothrops Garrison, 1994</td>
<td>Novelo-Gutiérrez 2005a</td>
</tr>
<tr>
<td>Epetogomphus elas Selys, 1858</td>
<td>Novelo-Gutiérrez 2005a</td>
</tr>
<tr>
<td>Epetogomphus euantia Calvert, 1905</td>
<td>Novelo-Gutiérrez 2005a</td>
</tr>
<tr>
<td>Epetogomphus fieryi Calvert, 1905</td>
<td>Novelo-Gutiérrez 2005a</td>
</tr>
<tr>
<td>Epetogomphus vipersis Selys, 1868</td>
<td>Novelo-Gutiérrez 2005a</td>
</tr>
<tr>
<td>Phyllogomphoides joaquini Rodrigues</td>
<td>Muzón et al. 2006</td>
</tr>
<tr>
<td>Captopilo, 1992</td>
<td></td>
</tr>
<tr>
<td>Neocondra caudacuta De Marmels, 2008</td>
<td>Novelo-Gutiérrez 2008</td>
</tr>
<tr>
<td>Neocondra santacatarinensis Costa et al. 2008</td>
<td>Costa et al. 2008a</td>
</tr>
<tr>
<td>Libellulidae (20)</td>
<td></td>
</tr>
<tr>
<td>Brechmorhoga archboldi (Donnelly, 1970)</td>
<td>Meurgéy 2008a</td>
</tr>
<tr>
<td>Brechmorhoga rubecula (Rambur, 1842)</td>
<td>von Ellenrieder 2007b</td>
</tr>
<tr>
<td>Brechmorhoga praedatix Calvert, 1909</td>
<td>Fleck 2004</td>
</tr>
<tr>
<td>Cannaphila insularis Kirby, 1889</td>
<td>Trapero-Quiñana & Cuellar Araujo 2009</td>
</tr>
<tr>
<td>Dasythemis mircki clara(Karsch, 1890)</td>
<td>von Ellenrieder 2007b</td>
</tr>
<tr>
<td>Dythemis maya Calvert, 1906</td>
<td>Novelo-Gutiérrez & González-Soriano 2004</td>
</tr>
<tr>
<td>Dythemis sternis Hagen, 1861</td>
<td>Novelo-Gutiérrez & González-Soriano 2004</td>
</tr>
<tr>
<td>Elasmotheres alciae González & Novelo, 2006</td>
<td>Novelo-Gutiérrez & González-Soriano 2004</td>
</tr>
<tr>
<td>Erythrophleps axotomina Ris, 1911</td>
<td>Garré et al. 2008</td>
</tr>
<tr>
<td>Erythrophleps corallina (Brauer, 1865)</td>
<td>Garré et al. 2008</td>
</tr>
<tr>
<td>Erythrophleps cervida (Erichson, 1848)</td>
<td>Trapero-Quiñana & Reyes-Tur 2008</td>
</tr>
<tr>
<td>Gyrothemis pumila (Karsch, 1890)</td>
<td>Fleck 2004</td>
</tr>
<tr>
<td>Idiotype longipes (Hagen, 1861)</td>
<td>Oldríns & Mascarenhas 2005</td>
</tr>
<tr>
<td>Macrothemis hahneli Ris, 1913</td>
<td>von Ellenrieder 2007b</td>
</tr>
<tr>
<td>Micrathyria unguulata Förster, 1907</td>
<td>Garré & Lizárraga 2007</td>
</tr>
<tr>
<td>Perithemis latis (Perty, 1834)</td>
<td>Costa & Régis 2005</td>
</tr>
<tr>
<td>Tauriphila argo (Hagen, 1869)</td>
<td>Fleck et al. 2006</td>
</tr>
<tr>
<td>Tollymis ultima Hagen, 1867</td>
<td>Fleck et al. 2004</td>
</tr>
<tr>
<td>Zenithoptera aniceps Pujol-Luz, 1993</td>
<td>Costa et al. 2004</td>
</tr>
</tbody>
</table>
Table 3. Faunal studies from the Neotropical region published between 2004 and 2009.

<table>
<thead>
<tr>
<th>Country</th>
<th>Area</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td>Coahuila State</td>
<td>Behrstock 2008</td>
</tr>
<tr>
<td></td>
<td>Chihuahua State</td>
<td>Behrstock et al. 2007</td>
</tr>
<tr>
<td></td>
<td>Baja California Sur State</td>
<td>Paulson & Molinow 2007</td>
</tr>
<tr>
<td></td>
<td>Sonora State</td>
<td>Upson et al. 2007</td>
</tr>
<tr>
<td></td>
<td>Sierra de Coalcamán, Michoacan State</td>
<td>Novelo-Gutiérrez & Gómez-Anaya 2008</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>Guadeloupe</td>
<td>Meurgey 2005</td>
</tr>
<tr>
<td>Cuba</td>
<td>Alexander Humboldt N.P.</td>
<td>Trapero-Quintana et al. 2004</td>
</tr>
<tr>
<td></td>
<td>Refugio Monte Cabaniguán, Tuna Prov.</td>
<td>Trapero-Quintana et al. 2008</td>
</tr>
<tr>
<td>Colombia</td>
<td>Chocó Dep.</td>
<td>Pérez et al. 2007</td>
</tr>
<tr>
<td>Brazil</td>
<td>Marambaia, Rio de Janeiro State</td>
<td>Anjos-Santos & Costa 2006</td>
</tr>
<tr>
<td>Argentina</td>
<td>Meseta de Somuncura, Rio Negro Prov.</td>
<td>Muzón et al. 2005</td>
</tr>
<tr>
<td></td>
<td>Iberá wetland, Corrientes Prov.</td>
<td>Muzón et al. 2008</td>
</tr>
<tr>
<td></td>
<td>Yungas cloud forest, NW Argentina</td>
<td>von Ellenrieder & Garrison 2007b</td>
</tr>
</tbody>
</table>

MNHN: Museo Nacional de Historia Natural, Casilla 787, Santiago, CHILE. Holds most of R. Martin’s collection. No electronic database including locality data available.

PUC: Pontificia Universidad Católica del Ecuador, Apartado 2184, Quito, Ecuador No electronic database including locality data available.

Existing Databases
Rosser W. Garrison and I maintain an electronic database which includes locality data and is also mostly (80%) georeferenced. It is a Visual FoxPro application which currently contains over 15,500 entries of about 1,150 species (about 66% of the described species for the region) occurring in the New World south to Mexico (Fig. 2). From these, most are known from a few localities, and only a few are widely distributed (Fig. 3) with the three most-recorded species being Rhionaeschna diffinis (217), R. variegata (216), and Argia yungensis (211). Coenagrionidae provide 27% of records, followed by Libellulidae with 19%, Gomphidae with 11%, Megapodagrionidae with 9%, and Protoneuridae with 8%, representing a proportional relationship to the total numbers known for the region for each family (Fig. 4). It was compiled from our personal collections (RWG, NVE), and from all literature records and examined specimens deposited in several Institutions that we examined for our work during the last few years. It includes complete distributional data for 364 species assessed by Dennis Paulson and myself for the Red List in 2005 and as part of the Global Dragonfly Assessment in 2007 (Appendix 1). Complete distribution data for another 211 species Rosser Garrison and I studied are also entered, thus a third (33%) of the total number of described Neotropical species can be considered satisfactorily mapped.

Future
The information from our database can serve as a funding nucleus to build a unifying database for the Neotropical region. In order to achieve this, the following tasks should be undertaken:

1) Published records: Records from the literature need to be added to species not yet revised, including information from numerous regional lists published during the last 30 years.

2) Unpublished records: Large numbers of dragonfly records are stored in collections and have never been published. If all odonatologists interested in the region were to make their unpublished records available, the database could begin to provide us with a fairly good picture of the Odonate distribution patterns in the Neotropics. Some collections do have paper databases, which could be digitalized. In most collections there are also unidentified specimens awaiting examination, which could be identified by the specialists in charge of them or by visiting researchers.

3) New records: Fieldwork is still needed in most areas; the highest priority lies in the lowland Amazon rainforests, the continent’s richest Odonata habitat. Of intermediate priority are regions with probably medium-rich faunas for which odonate records are not available, such as S Bolivia, N Paraguay, and E Colombia (Fig. 2).

References

Hagen, H.A., 1861. A synopsis of the Neuroptera of North America with a list of the South American species.
Smithsonian Institution Miscellaneous Collections xx + 347 pp.
Lencioni, F.A.A., 2006. Damselflies of Brazil. An illustrated identification guide. 2 – Coenagrionidae. All Print Editora VIII + 419 pp
McLachlan, R., 1881. II. Notes on Odonata, of the subfamilies Corduliina, Calopterygina, and Agrionina (Legion Pseud stigma), collected by Mr. Buckley, in the district of the Rio Bobanaza, in Ecuador. Transactions of the Entomological Society of London 1881: 25-34.
37: 279-282.

Pessacq, P. & J. Muzón, 2004. Description of the final stadium larva of Hetaerina rosea Selys (Zygoptera:

von Ellenrieder, N., 2007a. The larva of Argia joergenseni Ris (Zygoptera: Coenagrionidae). Odonatologica 36: 89-
Some Odonata from the Northern Sierra Madre Natural Park, Isabel, Luzon, Philippines

Reagan J. Villanueva [reaganjoseph@lycos.com], J. van der Ploeg and M. van Weerd

The Northern Sierra Madre Natural Park (NSMNP) covers an area of 359,486 ha (DENR 2001). The park harbors a variety of terrestrial habitats: mangrove forests and beach forests along the coast, ultra-basic forest, lowland dipterocarp forest, and montane oak-laurel forest and mossy forest at high elevations (Mallari et al., 2001). The NSMNP is one of ten priority protected areas in the Philippines: it holds 25 percent of the remaining primary lowland forest of the archipelago (Tan, 2000). The area has remarkably high levels of endemism: 30 percent of bird species and 62 percent of mammal species recorded in the NSMNP are endemic to the Philippines (Van Weerd 2002). Thirty-five globally threatened species are recorded in the protected area.

Logging, agricultural encroachment, the use of destructive fishing and hunting methods, and the conversion of wetlands form major threats to the biodiversity of the protected area. Government plans for infrastructural development and mining could have a severe impact on the park.

From 12 to 24 September 2008, we organized a biodiversity survey to sitio Dipagsangan, barangay Didian in the municipality of Palanan. We camped in lowland dipterocarp forest at Dipinantahikan (campsite 1), and in mid-elevation forest at Pinakdatdatin ti Bulayo (campsite 2) (see table 1).

<table>
<thead>
<tr>
<th>Altitude (m.a.s.l)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipinantahikan (campsite 1)</td>
<td>N 16° 53.398’ E 122° 20.471’</td>
</tr>
<tr>
<td>Pinakdatdatin ti Bulayo</td>
<td>N 16° 51.984’ E 122° 18.859’</td>
</tr>
</tbody>
</table>

The following is an annotated list of the species encountered during the expedition. We only include species found in the forest areas; species encountered near Palanan town proper are not included. The short field survey revealed 35 species, and represents the first odonata survey in the eastern side of NSMNP. New records...
are predominantly zygopteran, which, with one exception, are all endemic. This shows the remarkable odonata assemblage in this largest remaining Philippine forest block. The present list is the result of a short fieldwork period (with field days further shortened by a tropical depression hitting the area during the survey). Additional species are to be expected when more fieldwork is conducted during good weather conditions. More field work is also necessary to provide distributional data for the undescribed species.

Platystictidae

Drepanosticta sp. (n.)
Large solitary species presumed endemic in Luzon Island. The species was found perching in well shaded areas of the creek. It belongs to the *Drepanosticta halterata*-group and is allied to the undescribed species from Cebu and Bohol islands characterized by a triangular-shaped posterior lobe process.

Drepanosticta halterata (Brauer, 1868)
The dominant zygopteran encountered in well shaded rheophilous areas.

Drepanosticta moorei van Tol, 2001
This Luzon endemic was encountered beside a partially shaded creek perching high on the shrubs.

Protosticta lepteca van Tol, 2005
A dainty north central Luzon species.

Sulcosticta sp. n.
In the field the species at first glance resembles lestids with the abdomen positioned like a golf-tee. This small species perched among hanging vines and roots a few feet from the ground.

Coenagrionidae

Amphicnemis isabelae Gapud, 2006
This species was described based on a single male collected in the Forest Dynamic Plot, Palanan in 2004 (Gapud, 2006). The species was encountered perching near the forest floor with no nearby water source.

Pseudagrion p. pilidorsum (Brauer, 1868)
This was the only Oriental damselfly species encountered in the area.

Teinobasis cf. filiformis (Brauer, 1868)
Two mature males of this Luzon region endemic were encountered.

Teinobasis nigra Campion and Laidlaw, 1928
The species is a Luzon endemic. It was encountered above a stagnant portion of the stream with muddy substrate.

Teinobasis samaritis Ris, 1915

Platycnemididae

Risiocnemis arator Hamalainen, 1991

Risiocnemis atropurpurea (Brauer, 1868)

Risiocnemis ignea (Brauer, 1868)

Risiocnemis incisa Kimmins, 1936
This north and central Luzon endemic was encountered at forest seepages, small streams and springs, though occurring in lower numbers than the similar *R. ignea*.

Risiocnemis elegans Kitagawa 1990
The species is a north Luzon endemic. It was encountered in shaded seepages and even in moist forest floor several meters from water sources. Pairs were seen ovipositing on moist moss with no standing or running water nearby. *Risiocnemis varians* was listed by Gapud (2006) from Forest Dynamic Plot, Palanan. We believe this was a misidentification of *Risiocnemis elegans*, whose type locality is San Mariano, Isabela.

Risiocnemis sp. n.1
The species was encountered only in the stream running along ultrabasic forest. The only member of the genus noted perching in warm well-lit areas.

Risiocnemis sp. n.2
The species was encountered in low numbers in the site occupied by the previous species. The species resembles *R. arator* in the shape of the inferior anal appendage while the superior anal appendage resembles that of the previous species.

Megapodagrionidae

Argiolestes baltazarae Gapud and Adorada, 2003
The species is presumed endemic in Sierra Madre area. The species was seen in well shaded seepages.
This is a larger species with different bluish markings than *R. philippina*.

Chlorocyphidae
Cyrano unicolor (Hagen in Selys, 1869)
The species is a Luzon and Western Visayas endemic. Only the red form was noted in the survey area.
Rhinocypha colorata (Hagen in Selys, 1869)
Rhinocypha turcuni Selys, 1891
This species was seen in less disturbed lowland forest areas compared to its congener and was more abundant in the campsite at Dipinantahikan (primary lowland forest) than in Dipagsangan, a small village (rice fields and Orchards in secondary lowland forest).

Calopterygidae
Neurobasis luzoniensis Selys, 1873
This large beautiful metallic green damselfly is endemic in the Luzon region. The species prefers undisturbed habitat and is known to be dwindling in central Luzon areas.
Vestalis melania Selys, 1873
This endemic species is widely distributed in the archipelago, except Palawan.

Gomphidae
Gomphidia kirschii Selys, 1878

Aeshnidae
Tetracanthagyna sp. (based on larva)
Dredging done on selected areas revealed middle instar larva of the species.

Chlorogomphidae
Chlorogomphus sp.
The species closely resembles *C. dyak* but with several differences.

Corduliidae
Heteronaia heterodoxa (Selys, 1878)
This widespread endemic species was encountered only on a few occasions.
Idionyx philippa Ris, 1912
A specimen was noted at the first campsite in Dipinantahikan.

Libellulidae
Diplacina bolivari Selys, 1882
Lyriothemis ?cleis (could not be verified based on quick sighting)
The identity of the species could not be confirmed due to a very brief sighting of a single male perching near the campsite on Pinakdatatin ti Bulayo.
Onychothemis abnormis Brauer, 1868
A single male of this rare genus was encountered.
Orthetrum pruinum clelia (Selys, 1878)
Orthetrum s. sabina (Druy, 1770)
Pantala flavescens (Fabricius, 1798)

Acknowledgement
We would like to thank the office of the Protected Area Superintendent for their permission and support. Estaniel Prado and Bawi Donato guided us in Dipagsangan.

Literature

Oleg Kosterin [kosterin@bionet.nsc.ru], Nikita Vikhrev [hydrophorus@rambler.ru]

In 2005-2009 we made several visits to Thailand in winter and made observations and collections of Odonata, including some new provincial records. Those of the first visit in 2005 were published in Agrion (Kosterin, 2006), and an extended version of our odonatological data and impressions, updated with those of the visit in January 2006, was published in Malangppo (Kosterin & Vikhrev, 2008). We have to make a correction to these two publications: the locality Sai Kaeow beach in Chon Buri province, which we thought to be on Ko Khram island as misled by a local boatman, was in fact on a peninsula, N of Ban Bang Sare at 12°44’31.39” N, 100°50’31.84” E. Below, we present our findings made during further trips. The new provincial records with reference to the distributional atlas by Hämäläinen & Pinratana (1999) and later additions (Pinratana, 2003) were kindly confirmed by Dr. M. Hämäläinen. Most of the trips were undertaken by one of us, Nikita Vikhrev, a dipterologist who concentrated his attention on flies but made occasional collections and photos of Odonata. He visited the environs of Pattaya and Chan-ta-Then Waterfalls (Chon Buri Province) and the Khao-Khitchatut National Park (Chanthaburi Province) in November 2006, December 2007, December 2008 and February 2009; the Khao-Chamao-Khao-Wong National Park (Rayong Province) in December 2007 and December 2008, and the Pong Nam Ron environs (Chanthaburi Province) in December 2008 and February 2009. In the second half of February we made a joint trip to the island of Phuket.

New records are listed below. Coordinates were taken from Google Earth. All our photos of odonates have been or will be uploaded to the Asia Odonata Home Page by Eric Gibert: http://www.asia-dragonfly.net/index.php; and the photos by the first author to be soon available at his own page at: http://pisum.bionet.nsc.ru/kosterin/odonata/thailand.htm.

New records for Thailand provinces

Rayong Province:

Chanthaburi Province:

Sa Kaeo Province:

Agrionemis feminina femina Lieftinck, 1929: 3 ♂, 1 ♀ collected – a roadside pool at Sa Kaeo, 9.02.2009.

Phuket Province:

Echo modesta (Selys, 1860): 1 ♂, 1 ♀ photographed – Khao Phra Theo National Park, Ton Sai rivulet headwaters, herbs at a path through virgin forest, 8°01’49" N, 98°22’21" E, 19.02.2009 (both individuals persisted nearby each other); 2 ♀ visually – the same place, a bit downstream, 27.02.2009; 1 ♂, 1 ♀ photographed – Khao Phra Theo National Park, the Bang Pae valley upper part, 8°02’09” N, 98°22’54” E, 27.02.2009.

Vestalis anne Hämäläinen, 1985: 1 ♂ collected, 1 ♂ and ♀ photographed – Khao Phra Theo National Park, the Bang Pae valley upper part, 27.02.2009. The male specimen is reliably identified by the labium colouration and the structure of the upper appendages (Hämäläinen, 1985); the individuals photographed were found nearby and their identification is putative (but certainly they were not *Vestalis gracilis*, met with at some distance).

Podolestes coomansi Lieftinck, 1940: 1 ♀ collected – a grassy swamp in Nai Yang beach area, 8°05’27.3” N, 98°18’13.7” E, 17.02.2009; 2 ♂, 1 ♀ collected – the same place, 20.02.2009; 1 ♂ collected – the same place, 21.02.2009. This species (and genus) has already been discovered, quite unexpectedly, in three central provinces of Thailand: Nakhon Sawan, Pathum Thani and Nakhon Patom (Makbun, 2009). Our specimens fit perfectly to the original description by Lieftinck (1940) in every detail, including the male appendage structure, with the only minor difference being a more distinct pattern in the mesepimeron fore part: it is of a dark ground colour with a small distinct roundish blue spot at the level of the hind end of the large wedge-shaped antehumeral blue spots above them, on the mesepisternum (Fig 1) (in the figure of the original description the mesepimeron fore part has
Fig. 1. *Podolestes coomansi*, a male, a swamp in Nay Yang Beach area, 17.02.2009.

blue instead of bright blue) patches, from 20.02 both sexes were equally common, from 21.02 fully coloured individuals were common, and on 28.02 a pair in copula was observed. Nearby (8°05′26.4″ N, 98°18′10.2″ E) was another swamp, 210 x 150 m (at ‘Dee Bungalow’), also dry, of an appearance more familiar for a northern observer: with lower grass dominated by *Eleocharis* sp. with *Scirpus* sp., *Aconogonon* sp. and some Thelypteridaceae fern, locally with *Tjpha* sp. It was visited three times: on 17.02 one individual of *P. coomansi* was found there, on 21.02 they were as numerous as at the previous swamp, including young individuals with glistening wings and dull marking, while on 28.02 they were absent, although in the former swamp being as numerous as usually. Lieftinck (1954: 28) indicated the following habitat of *P. coomansi*: “Marshy spot in second growth forest”. In our case there were just narrow patches of trees separating wide swamps. It was noteworthy that during our observations both swamps had no surface water (damp ground at most) but all individuals of *P. coomansi* were young and some almost teneral. We may suppose that the larvae can tolerate seasonal drying of the habitat.

Ceriagrion auranticum Fraeser, 1922: 2 ♂, 3 ♀ collected – the same grassy swamp with *Nepenthes* in Nay Yang beach area where *Podolestes coomansi* occurred, P, 8°05′27.3″ N, 98°18′13.7″ E, 17.02.2009; 1 ♀ collected – the second, *Eleocharis* swamp nearby, 8°05′26.4″ N, 98°18′10.2″ E, 21.02.2009. These damselflies were extremely numerous at the *Nepenthes* swamp from where they penetrated to the nearby lawns; at the *Eleocharis* swamp only the single female was met with.

Pseudagrion williamsoni Fraeser, 1922: 1 ♂ collected – a pond on a rivulet flowing to the western coast between Ban Naithon and Ban Layan, 8°02′34.6″ N, 98°16′48.4″ E, 19.02.2009. (A male and female of *Pseudagrion pruinosum* (Burmeister, 1839) were observed in the same place).

Argiocnemis rubescens rubeola Selys, 1877: 1 mature ♂ collected – a grassy slope at a bank of the rivulet at its mouth at Naithon beach, 8°03′47.2″ N, 98°16′38.9″ E; 17.02.2009; 1 mature ♂ photographed – a pond on a rivulet flowing to the western coast between Ban Naithon and Ban Layan, 8°02′34.6″ N, 98°16′48.4″ E, 22.02.2009.

Coeliccia albicauda (Förster in Laidlaw, 1907): 1 ♂ collected - pristine forest in the Bang Pae valley, on a bush, 8°02′09″ N, 98°22′54″ E, 19.02.2009; 1 mature ♂ photographed, 1 not fully coloured ♂ collected – the same place, 27.02.2009; 1 ♂, 1 ♀ collected - a rivulet flowing to the western coast between Ban Naithon and Ban Layan, overgrown with secondary forest with a lot of bamboo and old *Gewea* trees, 8°02′36″ N, 98°16′48″ E, 19.02.2009; 1 ♀ collected – the same place, 26.02.2009. Of two males met on 27.02, one was mature and exhibited the colouration characteristic for the species while another one was obviously young and, instead of two pairs of bluish spots on a black background on the pteroethorax, had contiguous but dorsally incised whitish
humeral stripes on brownish background (Fig. 3). The same young male was observed [together with 1 female of *C. albicuada* and 2 males and 1 female of *C. didyma* (Selys, 1863)] on 23.02.2009 at Khao Khuan Kha Mt., 5 km NE of Khok Kloi, Phang Nga Province (8°18'04.5" N, 98°20'08.8" E).

Prodasineura collaris (Selys, 1860): 1 ♂ collected - an old *Gewea* plantation overgrown with wild vegetation on a steep eastern slope of a brook valley near Ban Sakhu, 8°04'02.8" N, 98°18'30.6" E, 16.02.2009. A photo of a male, taken by René Manger on 1.03.1994 in Khao Phra Theo National Park, is present in the database at http://www.asia-dragonfly.net (but subscribed by the author as *Prodasineura* sp. and identified by someone else).

It is interesting that it was *P. laidlawii* (Förster in Laidlaw, 1907) which we observed very numerous at the Bang Pae river (flowing to the eastern coast) in the same (very small) Khao Phra Theo National Park, as well as at the rivulet flowing to the west coast between Ban Naithon and Ban Layan, but not a single individual of *P. collaris* was recorded among them (while the rivulet of the Kathu waterfalls in the south-western part of the island for some reason lacked lotic odonates but for *Zygonyx iris malayana* (Laidlaw, 1902)).

Gomphidia abbotti (Williamson, 1907): 2 ♂ photographed – Khao Phra Theo National Park, the Ban Pae river flowing among huge boulders downstream of waterfalls, 8°02'21.4" N, 98°23'27.9" E, 19.02.2009; 1 ♂ visually – the same place, 27.02.2009; 1 ♂ collected - a rivulet flowing to the western coast between Ban Naithon and Ban Layan, below the pond dam, 8°02'34.6" N, 98°16'48.4" E, 22.02.2009. Our specimen, as well as the individuals photographed, belong to the dark form A according to Asahina (1986); the collected specimens have even further shrunken light pattern than described by him as the yellowish-white stripe on the labrum is interrupted at the middle (Fig. 4).

Tetrathemis irregularis hyalina Kirby, 1889: 1 ♂ photographed - Khao Phra Theo National Park, the Ban Pae river downstream of waterfalls, 8°02'21.4" N, 98°23'27.9" E, 19.02.2009. The male perched at a small twig near a pool at a boulder in the valley bed; upon revisiting this place on 27.02.2009 it was not observed.

Pseudothemis jorina (Förster, 1904): 1 ♂ photographed – a huge pond at a road 1 km NE of Khao Sai Tan Kliang Mt., 8°05'25" N, 98°19'24" E, 18.02.2009. The male perched on a dry branch hanging over the open water in the pond corner with dense tree stand at the steep bank.

Orchithemis pulcherrima Brauer, 1878: 1 ♀ collected (among females of *Neurothemis fluctians* (Fabricius, 1793)) - a hill crest with old *Gewea* stand overgrown by forest vegetation near Ban Sakhu, 8°03'57.7" N, 98°18'19.4" E, 16.02.2009. The female is rather large (hind wing 26 mm long) and has almost even brownish colouration: abdomen brown, unmarked except for black lateral and hind (but not middorsal) carinae, thorax unmarked yellowish-brown, fore side of pterothorax hairy with the hairs rising from dark specks, legs brownish with dark spines, head brown,

Fig. 2. Habitat of *Podolestes coomansi*, a swamp in Nay Yang Beach area. 28.02.2009.
hairy, frons and vertex with some greenish lustre. These characters might indicate *O. pruinans* (Selys, 1878) (Orr, 2005) but Mr. Rory Dow who kindly agreed to examine the specimen photo identified it as *O. pulcherrima* by certain venational characters.

Hydrobasileus croceus (Brauer, 1867): 1 ♂ collected, several visually – the same pond as above but its shallower part at the slope forest, 18.02.2009; several ♂ visually – a huge pond at Ban Layan, 8º02’31.9” N, 98º18’10.5” E, 25.02.2009; 1 ♂ visually – a pond on the Bang Pae rivulet at the National Park headquarters, 8º02’19.6” N, 98º23’29.1” E, 27.02.2009. Several males patrolled 2-4 m above the water surface. In the former locality an exuviae of this species was found in grass at the bank.

Orthetrum luzonicum (Brauer, 1868): 1 ♀ collected – a pass through a hilly ridge between Ban Sakhu and Ban Naithon, an old Gewea plantation, 8º03’48.2” N, 98º17’14.4” E, 26.02.2009.

Potamarcha congener (Rambur, 1842): 1 ♂ visually – grassy and muddy riverside swamps at SW suburbs of Thalang, 8º01’32.6” N, 98º19’39.0” E, 21.02.2009; 1 ♂ photographed, 1 ♀ collected – small muddy pools at a buffalo pasture, 8º04’53.7” N, 98º18’05.6” E, 28.02.2009 (the male perched, the female oviposited).

Macrodiplax cora (Brauer, 1867): 1 ♂ photographed – a huge pond at Ban Layan, 8º02’31.9” N, 98º18’10.5” E, 22.02.2009. The male perched on a prominent grass at an open and clear bank. Not observed upon a revisit on 25.02.2009, perhaps we saw a stray from the mangrove banks.

Totally, for the second half of February we met 47 odonate species in Phuket.

Some other observations and collections

The Krating River valley, including the Khao Khitchakit National Park (Chanthaburi Province) was a site repeatedly visited in the same dry season, each time some additional species being recorded. To those reported in (Kosterin & Vikhrev, 2008), we add *Argioconemis rubescens rubeola* Selys, 1877, a juvenile (red) female of which was observed and photographed on 20.11.2006 in the lower reaches of the Krating falls. On 21-23.12.2007, the environs of the Krating Country Resort, 2-3 km S of the Khao-Khitchakut National Park office but beyond the park territory were visited. This area was situated at the foot of the same mountain but had no rivers, there was just a shady brook or ditch about 5 m wide. At this ditch, at meadows and forest and plantation edges, quite a handful of *Zygoptera* were collected: *Aristocypha fenestrella* (1 teneral ♂), *Copera ciliata* (2 ♂), *C. vittata* (1 ♀), *Prodasineura autumnalis* (1 ♀), *Agriocnemis femina* (1 ♀), *A. pygmaea* (1 ♀), *Mortonagrion aborense* (Laidlaw, 1914) (2 ♂), *Aciagrion borneense* (6 ♂, 4 ♀), *A. pallidum* (4 ♂, 1 ♀), *Archibasis oscillans* (1 ♀) and *Ceriagrion praetermissum* (1 ♀). On 9.02.2009 a male of *Idionyx thailandica* Hämäläinen, 1985 was collected, which fluttered slowly among bush branches.

On 2.12.2008 at the Jomtien beach in Pattaya (Cho Buri Province) a male of *Zyxomma petiolatum* Rambur, 1842 was found, with non-coloured wing tips, attracted by light to a hotel, which is a common habit of this species, which is uncommon in Thailand (Hämäläinen & Pinratana, 1999).

Congregations of different species of *Rhyothemis* seem to be a commonplace. Earlier we observed one female of *R. phyllis* among a group of three females of *R. variegata* in Chon Buri Province (Kosterin, Vikhrev, 2008), both species being of the same size and similar principle colouration. At a large, shallow and muddy roadside pond 5.8 km S of Khok Kloi, 8º13’31.1” N, 98º17’55.8” E, on 23.02.2009 we observed together two *Rhyothemis* species very dissimilar in size and wing colouration: a male of *R. phyllis* and a male of *R. triangularis*.
perched nearby (within 1-2 m) on lotos stalks.

A new record for Vietnam

Dr. Pavel Kvartalnov, an ornithologist from Moscow State University who for a long time worked in Vietnam, has kindly sent us a male specimen collected by him in late June 2008 in grass at a pool at the Cattien National Park headquarters, which has turned out to be *Agriocnemis nana* (Laidlaw, 1914), not listed for Vietnam in Tsuda (2000) and Do & Dang (2006). The black pattern of tergite VIII consists of a black dorsal patch broad at the segment base and narrowing to but not touching its distal margin, with a pair of black dots at the end (the same in a male from Chanthabury, Thailand (Kosterin & Vikhrev, 2008) and two males from Angkor Wat, Cambodia (Kosterin & Vikhrev, 2006) available to us), that is corresponds to *Agriocnemis naia* Fraeser, 1923 (Fraeser, 1933) later synonymised to *A. nana* by D. E. Kimmins (1966).

Acknowledgements

We express our gratitude to Mr. R. Dow (Surrey) for identification of *Orchithemis*, to him and Dr. Vincent Kalkman (Leiden) for many valuable comments, to André Günther (Freiburg) and Bro. Amnuay Pinratana (Bangkok) for help with literature, to Dr. M. Hämäläinen (Helsinki) for his permanent help as an expert in Odonata of Thailand, to Dr. Pavel Kvartalnov (Moscow) for offering a specimen of *A. nana* from Vietnam. Ms. N. Dvoretskaya (Moscow) and Ms. N. Priidak (Novosibirsk) helped much in the field.

References

Fig. 4. *Gomphidia abbotti*, a perching male, the Bang Pae valley, Khao Phra Theo National Park, 19.02.2009
Observations of the oviposition behaviour of four species of *Euphaea* Selys (Zygoptera: Euphaeidae)

G.T. Reels [gtreels@cyberdude.com] & K.D.P. Wilson [kdpwilson@gmail.com]

Introduction

The calopterygoid family Euphaeidae contains eight Indomalayan genera and a single Palaeartic genus. The Indomalayan genus *Euphaea* is the most speciose in the family, comprising approximately thirty species (Schorr et al., 2009). Species of *Euphaea* typically inhabit clean, moderate to fast-flowing forest streams, and their robust larvae are found amongst coarse gravel, pebbles and cobbles on the stream bed, often in mid-channel, where the current is at its fastest (Brooks, 2002; Silsby, 2001; Reels & Dow, 2006). This presents adult females with a major problem: how to ensure their eggs are deposited within the larval habitat or as close to the larval habitat as possible?

It is not uncommon for the females of many coenagrionid and calopterygid species to alight on emergent vegetation and slowly submerge themselves by climbing down this support prior to ovipositing in, or very close to, the larval habitat (Brooks, 2002; Corbet, 1999; Silsby, 2001). In the family Chlorocyphidae, adult members of which are often found in the same fast-flowing stream habitats as adult *Euphaea*, females typically lay their eggs on waterlogged, semi-submerged logs and branches close to the larval habitat (leaf litter and gravel in backwaters; A.G. Orr, pers. comm.), usually (but not always) without needing to submerge.

As noted by Silsby (2001), there is little information in the published literature on the oviposition behaviour of euphaeids. What little information there is was reviewed by Reels & Dow (2006). This review indicated that adult *Euphaea* females frequently lay their eggs whilst submerged or highly exposed in the same high energy lotic habitats inhabited by the larvae. In some species, females have been observed to boldly dive head first into the water, in flight, in order to reach a suitable oviposition site.

Below, we present observations and remarks on the oviposition behaviour (real or inferred) of four *Euphaea* species, from Borneo, Thailand, Hainan and Hong Kong.

Observations

Euphaea subcostalis (Selys, 1873)

11 February 2008, Sungai Sbong, Kapit, Sarawak, Malaysia, 200m, N02º00.322 E113º06.287

At about 1110h, in bright but overcast weather, GTR saw a pair of *Euphaea subcostalis* in copula, flying low over a small (2 m wide) moderately fast-flowing forest stream in a shaded shallow cobble area, depth 5-10 cm. The pair settled on a leaf pack protruding from the mid-channel of the stream. After a minute or so, they broke tandem and the female commenced a rapid, low flight back and forth over the stream (5 cm above the water), with the male following close behind. The flight area covered approximately 3 m of stream length (= 6 m²). She repeatedly entered the water, by suddenly rising up to 30 cm above the surface then abruptly diving head first, at an angle of ca 70 degrees to the horizontal, very fast. The momentum gained easily permitted her to enter the water, although GTR was too far away from the behaviour to verify that her momentum always took her to the stream bed. All her dives were made at least 0.5 m in from the edge of the stream. She stayed submerged for one or two seconds each time, before re-emerging and resuming her rapid presumed ‘oviposition flight’. In total, she performed this diving submergence about 25 times in the space of three minutes. She also interrupted this pattern three times to alight on a semi-submerged twig in the mid-channel, about 50 cm long and 5 mm diameter, where she made brief unsubmerged oviposition movements.

Photo: 1. Female *E. subcostalis* with male in foreground, Sarawak, Malaysia. Photo by G.T. Reels
for up to five seconds before flying again. The male perched on the leaf pack in mid-channel on the occasions when she did this. After about three minutes, the female abruptly flew up to an overhanging perch some 2 m above the water. GTR left the scene thereafter. The substrate she had been diving onto was comprised of small cobbles. Aquatic vegetation, leaf litter and rotten wood were scarce in the stream bed and she did not appear to specifically target such substrates, aside from the occasions when she landed on the exposed twig.

Euphaea ochracea ochracea
Selys, 1859
10 April 2001 Khao Panom Bench N.P., Thailand
At mid-day a female _Euphaea ochracea_ was observed by KDPW ovipositing in a fast flowing hillstream. The female had elected to oviposit into a sodden stick wedged between rocks in the splash zone of a torrential cascade section of the stream. The lower part of the stick, located just above the water level where the female had selected to oviposit, was continuously exposed to strong splashes and on occasions the female was completed submerged for short periods during surges of stream flow. Throughout the oviposition period an attendant male perched nearby, quite close to the female on the same stick, but sufficiently further up to avoid surge flows and most of the strong splashes.

Euphaea ornata (Campion, 1924)
23 May 2007 Ganzaling, Hainan, China, 180m, N18°22′ E109°38′ (approx.).
At 1245h, in warm, sunny weather, GTR saw a female _Euphaea ornata_ dive into the water onto a submerged twig ca 1 cm underwater in the mid-channel of a fast-flowing shallow riffle of a small (3 m wide) shady cobble-boulder forest stream. It clung onto the twig for 30 s in the current before abruptly exiting the water. It was accompanied by a male which perched 10 cm away on a leaf sticking out of the water, and flew off with her (not in tandem) when she exited. No oviposition movements were discernible during the female’s period of submergence.

23rd April 2008 Wuzhishan, Hainan, China, 500m, N18°58.305′ E109°40.654′
At ca 1100h, GTR was on a small (1 m wide) sunlit cobble-boulder tributary in secondary forest, when a tandem pair of _E. ornata_ came down to the water at a semi-submerged leaf pack in the mid-channel. The male alighted on the above-water part of the leaf pack; the female in the water. The female broke tandem and quickly submerged herself beneath the leaf pack. The water depth was 8 cm. She stayed submerged (and out of sight) for about 3 minutes before she was inadvertently disturbed, whereupon
she flew out of the water and settled on nearby vegetation. The male moved to a boulder about 30 cm from the presumed oviposition site until similarly disturbed.

Euphaea decorata Selys 1853
23 July 2008 Hok Tau, Hong Kong, China, 150m, N19º19.341 E122º56.603

At 1035h at a small (2 m wide) open aspect boulder stream in secondary forest, GTR observed a pair of *Euphaea decorata* in the wheel, perched on a sunlit boulder in mid-channel. After two minutes the pair broke tandem and the female flew low over the water about 1m upstream to a point where some *Acorus* was growing in a short cascade section. The uppermost leaves were intermittently breaking the surface of the water. The female flew upstream slowly, about 5 cm above the water, until reaching the *Acorus*. She then alighted on the semi-submerged leaves, clinging on against the stiff current and commencing oviposition movements. This behaviour was photographed. The male initially accompanied her in flight, then settled on a nearby (50 cm away) perch. The female was observed clambering over the intermittently submerged leaves and ovipositing for ca 10 minutes, before GTR was unfortunately obliged to move on. The female actually disappeared from view for about three minutes, and was presumably completely submerged and beneath the leaves at this point. The male made two short patrol flights over the oviposition site during the ten minutes in which observations were made.

Remarks
Unfortunately, GTR was unable to photograph the spectacular diving behaviour exhibited by the female *E. subcostalis* (which was observed through binoculars at a distance of about 5 m), and could not determine whether the female was able to reach the stream bed (up to 10 cm below the surface). It seems likely, however, that the female repeated her diving behaviour so many times for either (or both) of two reasons: she was trying unsuccessfully to reach the stream bed, or she was reaching the stream bed but repeatedly encountering a substrate unsuitable for oviposition. The force with which the female was striking the water, and the shallow depth, suggests that the latter explanation may be the more probable, particularly bearing in mind the observation by Choong (2005) of a female *Euphaea impar* Selys diving into water of similar depth to oviposit on slime-covered rocks and roots. This very dynamic method of submergence and very abrupt re-emergence contrasts with observations of *E. ochracea*, a sodden stick was observed to be used as a substrate for oviposition, which was located in a torrential section of stream and involved exposure to strong splashes and occasional passive submergence.

In the case of *E. ochracea*, a sodden stick was observed to be used as a substrate for oviposition, which was located in a torrential section of stream and involved exposure to strong splashes and occasional passive submergence.

The two brief observations of submergence by female *E. ornata* from Hainan represent the first records of this style of (presumed) oviposition-related behaviour for this species. It is unfortunate that actual oviposition was
not observed, but it is reasonable to suppose that this was the reason for the submergence in both cases.

Underwater oviposition by *E. decorata* into *Acorus* leaves, as described above, is a behaviour which was also observed by Reels & Dow (2006), who noted this was apparently the first observation of *Euphaea* ovipositing into living green vascular plant tissue. It noteworthy the additional record described here also involves the same oviposition substrate.

Females of *Euphaea* spp. are very stout. Their robust build undoubtedly helps several species within this genus to withstand the severe physical stresses encountered during oviposition in cascades and riffles, either from diving headlong into riffle sections and struggling against the current, or from exposure at torrential splash zone sites. The larvae of many oriental euphaeids inhabit fast flowing sections of steep gradient hill streams. This contrasts slightly with *Epallage fatima*, the type species for the family, which frequents riffle sections of streams generally located in areas with moderate gradients and relatively slower current flows. The other notable difference is the males of *Epallage fatima* often remain attached, in tandem, to ovipositing females. The oviposition substrate for *Epallage* is floating vegetation, living or dead. This type of substrate is frequently absent from many oriental, steep gradient hill streams.

References

The 6th WDA International Congress of Odonatology, Xalapa, Mexico, 7-12 June 2009

Michael J. Parr [mima37@tiscali.co.uk]

The organising committee of Rodolfo Novelo-Gutierrez, Enrique Gonzalez-Soriano and Alex Cordoba-Aguilar said “Organizing the 6th WDA Congress has been a pleasure and a challenge. On one hand, we were very happy to provide the best academic and friendly environment to our colleagues and friends. However…given the rather unfortunate swine ('flu) outbreak that occurred in May…many issues became far more complex”. It was, indeed, extremely unfortunate the 'flu outbreak occurred so close to the start of the congress. If I had travelled before the UK Government had lifted its restrictions my travel insurance would have been invalid, and it appears other intended attendees, including our Japanese friends were not so fortunate to be given clearance to travel in time. I appreciate what a logistical nightmare these problems must have created for our organising committee. Those of us who travelled to Xalapa are deeply appreciative for all of their successful efforts to organise such an interesting and stimulating programme of scientific, cultural and social events.

The scientific programme included 40 oral presentations and 18 poster contributions held in the conference facilities of the Instituto de Ecologia AC. Delightfully situated in the Botanic Gardens, the Institute provided an excellent congress venue.

After the opening ceremony on Monday 8 June at which the Director of the Institute, Dr. Miguel Equihua, welcomed all the participants, I was grateful for the opportunity to talk about the life of Professor Philip Corbet who died last year and in whose memory this congress was being held.

Michael Samways (University of Stellenbosch, RSA) gave the first plenary lecture, on conserving dragonflies in a rapidly-changing world. His talk highlighted the negative and positive effects on dragonflies in today’s world and stressed the importance of conserving natural areas in the first place, while recognising dragonflies often respond positively to restored conditions.
The next session of six talks, chaired by Goran Sahlen, focussed on changing dragonfly populations and communities; monitoring schemes; and re-colonisation in Sweden, the Netherlands, Slovakia, Hong Kong and possible new species in the Colombian Andes.

With John Hawking in the chair the final session of 5 talks included phylogenetic research on palaeotropical Zygoptera; an analysis of Odonata community structure in three microbasins in central Mexico; changes in Odonata larval assemblages in relation to the ecological health of a large river; Ischnura hastata as an indicator of water quality in the Azores; and dynamics and continuity in Westphalian dragonflies. The Board of Trustees Meeting followed later that evening in the Hotel Crowne Plaza where many of the participants were based.

Tuesday morning’s plenary talk was given by Mark Forbes (Carleton University, Canada) on “The ecological Parasitology of Odonates: Resistance to Understanding.” Mark considered how dragonflies cope with parasites and pathogens and showed what resistance to parasites looks like. He dealt with understanding how resistance evolves and what constrains it, which necessitates a firm understanding of the natural history of both host and parasite. Alex Cordoba-Aguilar chaired the next four lectures which covered immune ability in Zygoptera and the significance of the red wing spot in Hetaerina spp.

This was followed by a series of seven talks chaired by Martin Serrano-Meneses which dealt with reproductive behaviour in Protoneura cava; survivorship in Calopteryx spp.; sexual selection and evolution of male
wing pigmentation; interspecific aggression in *Hetaerina* spp.; biogeography, ecology and mimicry in multiple species; and variation of male genitalia in Colombian dragonflies.

Andrea Worthington (Siena College, Loudonville, USA) chaired the final session of the day, papers including a review of group oviposition in damselflies; a comparative study of male reproductive behaviour in chlorocyphids; looming-sensitive neurones predict time to contact prey (Andrea identified a pair of neurones which appear to involved in calculating the time to contact with prey in hunting Anisoptera); and Bayesian molecular results to estimate divergence times and diversification rates in Anisoptera.

The Mid-Congress tour on Wednesday 10 June was devoted to a cultural visit to the internationally famous El Tajin archaeological site. Our coach took us north along the Gulf of Mexico coast to El Tajin which is an impressive reminder of a classic Veracruz town and ceremonial centre, having its zenith between AD600 and 900. It was abandoned around AD1200 and after being obliterated by jungle encroachment was rediscovered by the Spanish in 1785. Leaving El Tajin we journeyed south and stopped to my great surprise and delight for a warm welcome and splendid meal at Alex Cordoba’s in-laws’ house. Alex’s wife, Anna, her parents, relations and friends had co-operated to produce a wonderful authentic Mexican meal in their garden. We sat at round tables under a large open marquee where we were presented with three courses of delicious servings which were totally new to many of us, but much enjoyed and appreciated by all. And then Anna’s father produced a bottle of high quality tequila, the spirit made from distilled *Agave* juice. By the time we rejoined the coach we were feeling very happy!

Thursday 11 June commenced with Rosser Garrison’s (California Department of Food and Agriculture) plenary talk on the diversity of neotropical Zygoptera. Rosser said although the Neotropical Region possesses the highest diversity of odonate species in the world, basic information on their taxonomy, life history and biology is fragmentary. He discussed the state of knowledge of the genera and species of the region. Before the coffee break we learned about some surprises in the phylogeny of the Coenagrionidae during a session chaired by Mike May; taxonomic distinctness and the assessment of changes in odonate phylogenic diversity; and also about validation of standard methodology for populations and community studies.

The day was concluded with a session chaired by Vincent Kalkman, with five papers dealing with dragonfly distribution patterns in Africa, the New World, Australia, Neotropical Region and worldwide. This was followed by the IUCN Meeting.

Short oral presentations preceded each of the two poster sessions. The posters were carefully scrutinised and prompted much discussion.

Andreas Martens chaired the final paper session on Friday; an interesting variety of subjects including: temperature dependence on emergence; seasonal changes in body size, sex size dimorphism and sex ratio; comparison of Odonata and Ephemeroptera; diurnal activity of *Cordulegaster bidentata* ; branched setae on larval feet; and last instar larva and emergence of *Erythrodiplax fervida*.

During the afternoon the Biennial General Meeting took place, and was very efficiently handled from the outset by Wolfgang Schneider in the unfortunate absence of the standing down President and Chairman Gordon Pritchard. With the completion of Gordon’s term of office, Wolfgang, our new President and Chair took over the meeting officially. Presentations were made to the worthy winners of the best poster and oral presentations, by the young odonatologists Cornelio A. Bota-Sierra and Melissa Sánchez Herrera.

Later that evening we all assembled for the Congress Dinner in the Hotel Crown Plaza. This was a most happy and enjoyable occasion, not the least because many of the younger members of the international dragonfly
community were present, as well as the older (and oldest!) ones. It is really pleasing to know that Colombia, Costa Rica, Cuba, Mexico and Puerto Rico are to the forefront of modern odonatology with so many enthusiastic, knowledgeable and progressive young scientists. My fervent hope is that many of these young odonatologists will present their research findings, including papers at this congress, for publication in IJO.

From Saturday 13 June through to Tuesday 16 June about 30 delegates joined the post-congress tour to Tlacotalpan and Los Tuxtlas in Veracruz State. The World Heritage site of Tlacotalpan is a fascinating old colonial town where we were served a very fine meal washed down with ‘gallons’ of pink refreshing drink (origin unknown), but exceedingly acceptable! That afternoon we travelled on to the La Finca Hotel on the shores of Lake Catemaco – a perfect setting with all the rooms overlooking the lake. My wife and I had good views of a woodpecker visiting a nest in a palm tree trunk right opposite our room.

The next day was spent at a fine river in Tuxtla at the Ecological Research Centre where we were able to ‘get to grips’ with some local odonates. Here we all spread out in various directions, those with nets catching dragonflies, those without, observing, photographing and chatting. Later we were welcomed with a pleasant lunch and delicious rice-water flavoured with cinnamon at the Research Centre. A small, informative Museum attached to the centre was visited before we had a most interesting walk through the surrounding dry forest. Leaf-cutter ants, howler monkeys, dragonflies at a couple of the streams we crossed and sensitive mimosa plants all contributed to a fascinating walk. But most surprising was finding a Keel-billed Toucan on the forest floor. At first thought to be injured or sick, but when Alex Cordoba put a net over it, it showed plenty of active resistance – so quite a puzzle. It was taken back to the Centre for feeding/water/recovery.

Monday 15 June involved travelling to Veracruz city, on the way stopping off for a tour of a cigar factory (all made individually, one at a time by hand) and then on to a most impressive waterfall site. This was quite a good place for dragonflies despite being touristy. Our last tour night was spent in the Hotel Jaragua in Veracruz. In the evening we all went into town in our bus for our final gathering and to sample more authentic Mexican atmosphere and food. The waterfront had a real holiday/party ambience with open-top buses offering tours of the town. All was brightly lit and with lively music playing wherever we walked. It was a fitting end to a delightful congress. Thanks to all who made this such an engaging meeting, and especially to Rodolfo, Enrique and Alex. We hope to see you all in Japan.
A few words about Phil Corbet
Tribute to Professor Stephen Corbet (21 May 1929 – 13 Feb. 2008) given following the opening ceremony at the 6th WDA International Congress of Odonatology, Xalapa, Mexico, 13 June 2009

Michael J. Parr [mima37@tiscali.co.uk]

Firstly, may I express my sincere thanks to the organisers of this International Congress for giving me the opportunity to say a few words of appreciation for our dear friend and colleague Professor Philip Corbet who died last year.

Many of you attending this meeting will have known Philip Corbet personally and most of you will certainly be familiar with many of his numerous publications, particularly his outstanding books on dragonflies. Several comprehensive obituaries and tributes have been published in the British press and odonatological journals since his death in Cornwall on 13 February last year. For example: Peter Marren in The Independent for 28 Feb. 2008; Anon, the Daily Telegraph for 6 March 2008; Mike Parr, vol 25(1) of Journal of the British Dragonfly Society; and the special editions of WDA’s Agrion and IJO have been dedicated to his memory.

In view of what has already been said and published about Philip’s numerous publications and life achievements I do not propose to repeat or reflect on these in any detail. He was without doubt in my mind, the world’s foremost odonatological authority. The range and depth of his knowledge was astonishing, and until the mild stroke in 2001, his recall of scientific details and events was probably unparalleled.

It was indeed fortunate for us, as odonatologists, that Philip chose at the beginning of his career at Reading and Cambridge Universities to make the biology of dragonflies a major subject for study – a subject which absorbed him for the whole of his working life whenever circumstances allowed it. For considerable periods in his career he was employed primarily to pursue other fields of study – in Uganda 1954-62 the food of non-cichlid fishes in the Lake Victoria basin, and also the behaviour and ecology of mosquitoes occupied his actual employment. Nevertheless, during this time (in his spare time?) he not only wrote most of his Biology of Dragonflies (1962) but also produced a series of papers containing descriptions of numerous African odonate larvae. In one of these papers (The Entomologist, vol. 9 (1125)) he describes differences in the larvae of Brachythemis leucosticta living in different types of substrate and so he may have pre-empted the recognition of B. impartita recently separated from leucosticta by K.D. Dijkstra and N. Matuskina.

Philip would have been excited by this discovery of a new Brachythemis species when we all thought we knew B. leucosticta well, and I can also imagine his frustration in not having a collection which he could have re-examined. He would also undoubtedly have found the familiar Trithemis ‘stictica’ now comprising three species as a result of Damm and Hadry’s work to be reported in this meeting, as a hugely satisfying study in taxonomy.

But apart from dragonflies and mosquitoes, Philip was an excellent and all-round naturalist and biologist. He and I shared a deep common interest in all aspects of natural history. When he visited me in Somerset in the south-west of England we enjoyed walks from my home not only to observe odonates flying along drainage channels and rivers of the Somerset Levels but the whole range of wild life from newts to foxes and butterflies to kingfishers. We both had particular interests in the Lepidoptera in our early days but we agreed the ecology and behaviour of this order of insects could not match that of the odonates, and thus dragonflies eventually became our main field of interest.

However, Philip’s fascination for butterflies never really faded, and shortly before his death we found ourselves discussing the British Orange-tip Butterfly, Anthocharis cardamines. He said to me “Mike, have you ever seen a female Orange-tip?”. I replied “Yes, I think so, but they are much less likely to be recognised than the males”. Male Orange-tips are easily recognised even from a distance because of the bright orange fore-wing tips, but females lack this distinguishing characteristic and, in flight, closely resemble the much more common Green-veined White, Pieris napi and Small White, P. rapae. When I checked my own collection I found I had a single female Orange-tip, dating from the 1940’s, alongside several males. On inspecting its label it said ‘bred’ which indicated I had reared it from a caterpillar, and thus I can only say for certainty I have recognised this sex in captivity and in my collection, not in the wild! The apparent rarity of female Orange-tips is something of a mystery. Philip’s seemingly innocuous question about the female Orange-tip was typical of the man – he was always asking himself and his colleagues questions and probing, so that his mind seemed to be for ever alert and looking for answers.

When Philip returned to live and work in the UK we enjoyed many occasions when it was possible to combine dragonfly work and relaxed socialising. It was often convenient for him to break his journey en route to or from BDS or other meetings by staying a night or two with us in Somerset, when his fund of jokes
I have had no better friend. I personally have been immensely fortunate and grateful to have known Philip for some forty-three years. He lives on through his very exceptional contributions to odonatology and through our memories of a special human extraordinary scientist. He is, of course, sorely missed by family, friends and dragonfly lovers everywhere, but he was a wonderful, engaging and stimulating companion for many people, as well as being an and Sarah in close proximity he was indeed a lucky and happy man.

bumble bees (Hymenoptera) and pollination mechanisms. It seems almost unnecessary to say that with both Sally companionship which they expressly found so satisfying and pleasurable. Philip was also very happy to have his whom he could discuss his work and other interests, including music. Philip and Sarah rejoiced in each others companionship which they expressly found so satisfying and pleasurable. Philip was also very happy to have his sister Sally residing close by throughout his time in Cornwall. Sally is an entomologist specialising in the study of bumble bees (Hymenoptera) and pollination mechanisms. It seems almost unnecessary to say that with both Sally and Sarah in close proximity he was indeed a lucky and happy man.

Philip was married three times and he has a daughter, Katarina, by his second wife. On moving to Cornwall from Edinburgh he met Sarah Jewell who became his partner through his remaining years. Sarah and Philip seemed to complement each other perfectly and she clearly was highly important to him as someone with whom he could discuss his work and other interests, including music. Philip and Sarah rejoiced in each others companionship which they expressly found so satisfying and pleasurable. Philip was also very happy to have his sister Sally residing close by throughout his time in Cornwall. Sally is an entomologist specialising in the study of bumble bees (Hymenoptera) and pollination mechanisms. It seems almost unnecessary to say that with both Sally and Sarah in close proximity he was indeed a lucky and happy man.

Philip was a wonderful, engaging and stimulating companion for many people, as well as being an extraordinary scientist. He is, of course, sorely missed by family, friends and dragonfly lovers everywhere, but he lives on through his very exceptional contributions to odonatology and through our memories of a special human being. I personally have been immensely fortunate and grateful to have known Philip for some forty-three years. I have had no better friend.

focusing on survival during the hot dry season. Societas Internationalis Odonatologica Rapid Communications (Supplements) 15: VIII, 29 pp.

*Items marked thus are abbreviated versions of Sebastian et al. (1990), placed in various serials in order to give wide exposure to a successful field trial of mosquito suppression by augmentative release of a dragonfly.
Special 20% Discount

Dragonflies and Damselflies of the West
Dennis Paulson

“Extremely well organized, and very well written. This is a superb treatment. With its impressive number of large, clear images and thorough text, it will immediately become the must-have field guide for western odonate watchers and researchers.”
—Giff Beaton, author of *Dragonflies and Damselflies of Georgia and the Southeast*

Dragonflies and Damselflies of the West is the first fully illustrated field guide to all 348 species of dragonflies and damselflies in western North America. It is the field guide naturalists, conservationists, and dragonfly enthusiasts have been waiting for.

- Covers all 348 western species in detail
- Features a wealth of color photographs
- Provides a color distribution map for every species
- Includes helpful identification tips
- Serves as an essential introduction to dragonflies and their natural history

Dennis Paulson’s books include *Shorebirds of North America* (Princeton) and *Alaska: The Ecotravellers’ Wildlife Guide*. Now retired, he was director of the Slater Museum of Natural History at the University of Puget Sound.

Special Paper Price $23.96 / £16.76 (List price: $29.95 / £20.95)
Special Cloth Price $52.00 / £35.96 (List price: $65.00 / £44.95)
536 pages. 863 color photographs. 392 line illus.
12 tables. 348 maps. (2009)

http://press.princeton.edu/titles/8871.html

FOR CUSTOMERS IN THE U.S., CANADA, LATIN AMERICA, ASIA, AND AUSTRALIA:
Call Toll-Free in U.S./Canada
Phone: **(800) 777-4726** (or 1-609-883-7413 outside the U.S. and Canada).
Mention keycode P0393.
To receive 20% off online at http://press.princeton.edu, and enter keycode **P03937** in the catalog code box at checkout.

FOR CUSTOMERS IN EUROPE, AFRICA, THE MIDDLE EAST, AND INDIA:
Call +44 1243 843294
Toll-Free Calls in UK only:
0800-243407
Mention the Worldwide Dragonfly Association flyer to receive your discount.

Prices subject to change.
Offer expires December 31, 2009.