Smaller damselflies have better flight performance at lower body temperature: implications for microhabitat segregation of sympatric Mnais damselflies

In many cases where two closely related species coexist, ecological interaction or reproductive interference drive species to diversify in their body size and/or other signal traits, often concurrently with microhabitat segregation. However, it is usually unclear how character diversification is associated with microhabitat segregation. We performed laboratory experiments using males of two damselfly species (Mnais…

Dragonfly flight: morphology, performance and behaviour

Odonata flight performance capabilities and behaviour and their body and wing form diversity are explored, and their interrelationships discussed theoretically and from observational evidence. Overall size and particularly wing loading appear predictably to be related to speed range. In Anisoptera at least, relatively short bodies and long wings should favour high speed manoeuvrability, though further…

Recent progress on the flight of dragonflies and damselflies

Remarkable flight performance is key to the survival of adult Odonata. They integrate varied three-dimensional architectures and kinematics of the wings, unsteady aerodynamics, and sensory feedback control in order to achieve agile flight. Therefore, a diverse range of approaches are necessary to understand their flight strategy comprehensively. Recently, new data have been presented in several…

Wing shape patterns among urban, suburban, and rural populations of Ischnura elegans (Odonata: Coenagrionidae)

Dragonflies and damselflies (the Odonata) are among the most efficient flying insects. However, fragmentation of the landscape can increase distance between habitats and affect costs of dispersal, thus shaping phenotypic patterns of flight-related traits, such as wing shape, wing loading and wing size. Urban landscapes are highly fragmented, which limits dispersal among aquatic habitats. Hence,